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ABSTRACT

Shape Memory Alloys (SMAs) have recently been considered for various applications involving dynamic load-
ing. An SMA body subjected to external dynamic loading will experience large inelastic deformations that will
propagate as phase transformation and/or detwinning shock waves. The wave propagation problem in a cylin-
drical SMA is studied numerically. An adaptive Finite Element Method (FEM) is used to solve several model
problems representing various boundary conditions and thermomechanical paths. The mesh adaptivity is based
on the Zienkiewicz-Zhu (ZZ) error estimator. Convergence studies are performed demonstrating the ability of
the adaptive FEM to accurately and efficiently capture solutions with moving shock discontinuities. The energy
dissipation capabilities of SMA rods are evaluated based on the numerical simulations. Correlations with existing
experimental data on impact loading of NiTi SMA bars are also performed.
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1. INTRODUCTION

There are many areas of applications which can successfully utilize the unique properties of SMAs. The hysteretic
response of polycrystalline SMA materials gives rise to different types of nonlinear wave propagation phenomena
which can be successfully utilized to attenuate large impact loads and dissipate their energy. The research
presented in this paper relates directly to the design of SMA components capable of absorbing dynamic loads.
Such components can be integrated into critical parts of structures that may need protection from impact loads.
Examples include joints that connect the hull of an underwater vehicle with its internal structure, tank armor
or blast resistant cargo containers.

The two main characteristics of SMAs that can be used to achieve these aims are the pseudoelastic effect
and the shape memory effect. At high temperatures the crystal lattice of a Shape Memory Alloy is in a high
symmetry austenite phase (A). At low temperatures the material exists in a low symmetry martensite phase
(M). Under the application of external stresses or changes in temperature a diffusionless phase transformation
between these two phases takes place and causes the effect of pseudoelasticity (see [1]). Upon mechanical loading
the material, after an initially linear response, develops large transformation strains which, upon the reversal of
the loading are completely recovered. Thus mechanical energy is dissipated while no permanent strains remain
in the material. The Shape memory effect allows material which has been deformed while in the martensitic
phase to recover its shape upon heating. The mechanism behind this behavior is the ability of SMAs to allow for
detwinning of the self-accomodated martensitic variants under application of external loads. Utilizing the shape
memory effect also leads to dissipation of mechanical energy but the SMA has to be heated after the loading is
applied to recover its shape.

An initial step into the analysis of the dynamic response of such structures is the understanding of the
wave propagation phenomena in SMA rods. The nonlinear stress-strain response of the material significantly
complicates the analytical analysis of the problem. Typically analytical solutions can be obtained by considering
simple boundary conditions such as constant step-loading. This is done in [2] where the wave propagation
problem is solved by the method of characteristics under adiabatic conditions. The stress-strain response of
the material is modelled by the constitutive theory [3] developed for polycrystalline SMAs. A similar study
involving a constant impact load, but focussing on different constitutive models which has been carried out in
[4]. Both analytical solutions are developed and numerical simulations utilizing Finite Difference (FD) schemes
are performed.

Numerical techniques are the only way to solve more complicated boundary value problems. An extensive
study using different FD schemes is performed in [5]. The Lax-Friedrichs scheme was found to produce accurate



results but with large amounts of numerical dissipation. An adaptive Finite Element approach is successfully
employed in [6] to obtaining accurate results for various thermomechanical loading conditions and boundary
conditions. The numerical dissipation is controlled effectively by using appropriate time integrations schemes.
Experimental results are also presented and compared with numerical simulations. A different approach is taken
in [7] where the coupled problem of wave propagation and heat transfer in an SMA rod is investigated numerically.
The authors focus on stress pulses of low magnitude that cause only elastic deformations. The temperature at
one end of the SMA rod is chosen as a function of time in such a way as to utilize the phase change due to the
shape memory effect in order to maximize the damping characteristics of the rod.

The selection of a proper constitutive model is essential to the analysis of the dynamic response of SMAs. Most
of the early rate independent SMA models can be presented in a unified thermodynamic framework developed
in [3] and based on the selection of appropriate thermodynamic potentials. This unified constitutive model is
extended in [8] to incorporate transformation induced plastic deformations and to account for the evolution of
the material behavior during cyclic loading. In the models proposed in [9; 10] the martensitic volume fraction
is subdivided in two parts to account for thermally induced self-accommodated martensite and stress induced
detwinned martensite. A different approach is taken in [11] where a rate dependent constitutive model is
considered that allows for softening during phase transformation. In other studies [12; 13] micromechanical
techniques are used to average the response of the parent austenitic phase and the different martensitic variants
in order to obtain a model for the macroscopic behavior of polycrystalline SMAs. For further details on SMA
models the reader is referred to [14]. In the current work the unified approach [3] is chosen over the more complex
micromechanical models, assuming rate independence in the constitutive thermomechanical response of SMAs.

The main focus of this paper is the numerical study of the one-dimensional dynamic problem of loading an
SMA rod. Based on the experimental observations in [6] the rate independent constitutive model [3] is selected.
An adaptive FEM method is used to obtain numerical solutions of a step and pulse loading problems. The step
loading problem is used to verify the rate of convergence of the FEM method utilizing known analytical results.
The mesh adaptivity is based on the error estimator [15] which uses the gradient of the computed displacements
to estimate the error locally. The estimator is applied at every time step to refine the FEM mesh in areas of
the rod where the nonlinear wave interactions take place and coarsen it in regions of little or no disturbances.
The computational savings achieved by the adaptive version of the FEM are also discussed. The impact pulse
problem is solved in order to get a physically realistic picture of the wave propagation in SMA rods and to
evaluate their energy dissipation capabilities. Finally, FE analysis of existing experimental results is performed
and simulations are compared with experiments.

The paper begins with a brief overview in Section 2 of the field equations, boundary conditions and constitutive
model defining the problem. Section 3 starts with an outline of the adaptive FEM used to simulate wave
propagation in polycrystalline SMA rods. A model problem with a step-function stress boundary condition
is next solved in Section 3.2. The problem is used to verify the numerical solution methodology and conduct
convergence studies. Then, a square pulse impact problem is solved for conditions of stress induced martensite
(Section 3.3). Expected values for energy dissipation as the pulse propagates through the rod are presented.
Finally, in Section 3.4 the numerical schemes developed in this paper are utilized to simulate actual experimental
results from a impact test on a NiTi SMA rod. The results of this work are discussed in Section 4.

2. FIELD EQUATIONS AND CONSTITUTIVE MODEL FOR THE IMPACT
PROBLEM OF SMA RODS

A cylindrical SMA rod of uniform cross-section and length L is considered. Initially the rod is stress free and at
rest and then is subjected to an impact load at its left end (x = 0). The right end (x = L) is assumed to remain
traction free (Figure 1). The rod is assumed to be long compared to its diameter so it is under uniaxial stress
state and the stress σ(x, t) depends only on the axial position and time. The axial component of the displacement
is denoted by u(x, t). The density of the material ρ is assumed constant. Finally, due to the timescale of impact
problems, adiabatic conditions are assumed in the rod. The local form of the balance of linear momentum and
energy then become [16; 17]:
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Figure 1. Schematic of the impact problem in an SMA rod.

ρ
∂2u

∂t2
=

∂σ

∂x
(1)

ρ
∂U

∂t
= σ

∂2u

∂x∂t
(2)

where U is the internal energy per unit mass. The following initial and boundary conditions are further assumed:

u|t=0 = 0,
∂u

∂t
|t=0 = 0, T |t=0 = TR (3)

σ|x=0 = σ0(t), σ|x=L = 0 (4)

The initial conditions indicate that the rod is at rest and its temperature T (x, t) is equal to the ambient
temperature TR. The boundary conditions specify the traction σ0(t) applied to the left end of the rod. For
a material initially in the austenitic phase A, the boundary traction typically causes the formation of a phase
shock (denoted by S on Figure 1) that propagates along the length of the rod. The material located to the left
of the shock has transformed and is in the martensitic phase M.

Equations (1)-(4) involve the field variables u, σ, U and T . Through the constitutive assumptions (see [6])
only u(x, t) and the temperature T (x, t) become the independent field variables. The constitutive model used
to model the behavior of polycrystalline SMAs is formulated in terms of thermodynamic potentials and employs
the volume fraction of detwinned martensite ξ formed from austenite as an internal variable [3]. The extension
of this model which allows for the the modelling of the detwinning deformation is described in [6].

The adiabatic heat equation (2) can be simplified in order to facilitate the numerical treatment of the impact
problem. Following the derivation in [6] it can be shown that under certain conditions the differential equation
(2) can be solved explicitly to obtain

T = TRe
− 1

ρc
(α(ξ)σ+ρ∆s0ξ) (5)

where c is the specific heat, α(ξ) is the effective thermal expansion coefficient and ∆s0 = sM0 − sA0 , s
M
0 and

sA0 being the specific entropies in the reference state for the martensitic and austenitic phase respectively. The
impact problem then reduces to solving the balance of linear momentum (1) for the only field variable u(x, t).
The remaining field variables σ and T are coupled with the strain ε and the internal variable of the constitutive
model ξ by the constitutive assumptions and equation (5).

3. ADAPTIVE FINITE ELEMENT ANALYSIS OF IMPACT LOADING OF AN SMA
ROD

The numerical solution of wave propagation problems in nonlinear materials presents significant theoretical
difficulties. A reliable FE analysis of such problems should be preceded by extensive numerical tests on boundary
value problems with known analytical solutions. In this section the adaptive FEM procedure is briefly outlined
followed by two numerical examples. The first example is the constant step loading problem which has been



Table 1. Material parameters used in the SMA model

Material constant Description Value
EA Young’s modulus in austenite 70× 109 Pa
EM Young’s modulus in martensite 30× 109 Pa
αA Thermal expansion coeff. in austenite 22× 10−6/K
αM Thermal expansion coeff. in martensite 10× 10−6/K
H Maximal transformation strain 0.05
ρ∆s0 Difference in the specific entropy of the two phases 2× 105 Pa/(m3K)
Mof Martensitic start temperature 275 ◦K
Mos Martensitic finish temperature 291 ◦K
Aos Austenitic start temperature 295 ◦K
Aof Austenitic finish temperature 315 ◦K

studied analytically (see [2; 4]). It is used to verify the convergence of the FEM and to demonstrate the capabilities
of the adaptive mesh refinement strategy. Based on this results, a second problem with pulse boundary conditions
is solved.

3.1. FEM procedure and mesh refinemnent

A standard semi-discrete Galerkin approximation with linear elements is used to generate the weak form of
the boundary value problem. The boundary value problem is then reduced to a system of nonlinear ordinary
differential equations. This system is in turn solved by the backward difference time integration scheme (see
[18]). The overall structure of the numerical algorithm is comprised of an outer loop which performs the time
marching of the ODEs, reducing them to a system of nonlinear algebraic equations at each step. Embedded in it
is the Newton-Raphson iterative process which solves the system of nonlinear algebraic equations. At each step
of the Newton algorithm the appropriate stiffness matrices and force vectors are assembled.

The computation of the stiffness matrices requires that the stress be evaluated at each integration point for
given increments in strain and temperature. This is done with the help of the cutting plane return-mapping
algorithm described in [19]. The coupling of the stress with the temperature in equation (5) results in the
need of an additional iterative process described in [6] that finds a solution to both the heat equation and the
dependence of the stress on strain and temperature that comes through the constitutive assumptions. This is a
computationally very expensive operation which makes the assembly process the most time-consuming stage of
the FEM procedure.

In order to reduce the computational time an adaptive meshing utilizing the Zienkiewicz-Zhu error estimator
(see [15]) is used. The estimator evaluates the difference between the piecewise constant stresses of the FEM
solution and their piecewise linear interpolation. This allows for local estimation of the error on the element
level. The estimator is applied at the end of each Newton step. If the resulting mesh is fine enough and
satisfies the target precision requirements the algorithm proceeds to the next time step. Otherwise the mesh is
refined/coarsened and the time step is repeated.

3.2. Constant load impact problem

The first model problem to be considered is step loading under conditions of pseudoelasticity. The step loading
problem is defined by the boundary condition

σ0(t) =

{

0 for t ≤ 0
σ0 for t > 0

(6)

This simple boundary condition makes the direct analytical solution to the problem possible (for a detailed
discussion, see [2]) and is therefore a convenient starting point in analyzing the FEM method. The structure
of the solution depends strongly on the impact stress σ0. Let the pair (εel, σel) be the point on the hysteresis
curve (Figure 2) that corresponds to the start of the phase transformation. In this example σ0 it is taken to
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Figure 2. Schematic of a stress-strain hysteresis loop and the critical points defining the solution to constant step loading
problem.

be sufficiently high so that full phase transformation transformation has occurred. It is also required that the
value of σ0 be high enough, so that the graph of of the stress strain relationship of the SMA is below the line
connecting the points (εel, σel) and (ε0, σ0). Following the analysis in [2; 4] the exact solution for the stresses
has a two-shock structure:

σ(x, t) =







σ0 for 0 ≤ x/t ≤ Vph
σel for Vph < x/t ≤ Vel
0 for Vel < x/t

(7)

The faster shock is a linear thermoelastic elastic shock and has velocity:

Vel =

√

σel
ρεel

(8)

This shock is due to the shock type of the boundary condition and the initial linear stress-strain response. The
second, slower shock, is a transformation shock which travels with velocity

Vph =

√

σ0 − σel
ρ(ε0 − εel)

(9)

This shock occurs not only because of the boundary condition but also because of the convex-down nature of
the stress-strain relationship for ε > εel. Higher stress levels travel with higher velocity than lower stress levels
which make the shock self sustained and independent of the exact form of the hysteresis prior the completion
of phase transformation. From a physical point of view the phase transformation shock specifies the point of
abrupt phase transition. For material points with x ≤ Vpht the material is in the martensitic phase and the
region x ≥ Vpht is still in the austenitic phase.

The material properties used for the model problem are given in Table 1 and represent generic NiTi SMA
properties. The length of the rod was taken to be 0.5m. The impact stress level used for the FEM runs was
σ0 = 400MPa which corresponds to an impact strain of ε0 = −0.0635 and is sufficient for the full completion
of the phase transformation. The onset of phase transformation begins at σel = −195MPa for a strain εel =
2.78 × 10−3. Given this, the speed of the transformation shock is Vph = 723m/s and the elastic shock travels
with speed Vel = 3294m/s. All simulation were run for a total time of 100µs and at the completion of each run
the numerical solution was compared with the analytical one.

Based on the first few numerical results (Figure 3) it can be observed that both the fixed and adaptive version
of the FEM give numerical solutions with the expected two shocks - one elastic and another corresponding to
the phase transformation. The smearing of the elastic shock is due to the numerical dissipation due to the time
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Figure 3. Stress profile at 30µs for a fixed mesh with 2000 elements (a) and an adaptive mesh (b). Both are done for a
time step τ = 0.1µs. Mesh nodes in the adaptive mesh (b) are marked with black squares and the thin line at the top
shows the density of elements.

Table 2. L1 error in the displacement distribution at T = 100µs.

N=2000 N=4000 N=8000 N=16000 N=32000
t=0.2 µs 1.98 ∗ 10−3 1.99 ∗ 10−3 1.99 ∗ 10−3

t=0.1 µs 1.31 ∗ 10−2 9.95 ∗ 10−4 9.97 ∗ 10−4

t=0.05 µs 5.63 ∗ 10−2 1.26 ∗ 10−2 4.98 ∗ 10−4 4.99 ∗ 10−4

t=0.025 µs 8.73 ∗ 10−2 8.74 ∗ 10−3 1.24 ∗ 10−2 2.49 ∗ 10−4 2.497 ∗ 10−4

Table 3. L1 error in the stress distribution along the rod at T = 100µs.

N=2000 N=4000 N=8000 N=16000 N=32000
t=0.2 µs 2.68 ∗ 10−2 2.75 ∗ 10−2 2.72 ∗ 10−2

t=0.1 µs 3.42 ∗ 10−2 1.87 ∗ 10−2 1.91 ∗ 10−2

t=0.05 µs 8.77 ∗ 10−2 2.95 ∗ 10−2 1.32 ∗ 10−2 1.34 ∗ 10−2

t=0.025 µs 1.26 ∗ 10−1 5.61 ∗ 10−2 2.58 ∗ 10−2 9.41 ∗ 10−1 9.47 ∗ 10−1

discretization scheme. The smearing effect can be eliminated by decreasing the time step for both the standard
and the adaptive version of the FEM. The convergence of the standard FEM solver is shown on Tables 2 and
3. Due to the presence of discontinuities in the stress the relative error is measured in the L1 norm. As seen
from Table 2 the convergence rate for the displacements are of optimal order 1 for the linear elements used. A
piecewise constant function on the other side has regularity 12 − δ. That is, for every positive constant δ > 0 the

piecewise constant functions belong to the space H
1
2
−δ

0 (0, 1). Therefore one cannot expect optimal convergence
in the stresses and as seen from Table 3 the order of convergence is 0.5.

The adaptive FEM approach yields the same solutions as the standard FEM but at a much lower computa-
tional cost. For the same time steps for which the convergence of the fixed FEM was tested the adaptive meshing
results in similar accuracy as seen from Table 4. A comparison in the computational performance of the fixed
and adaptive FE methods is given in Table 5. The time step used is τ = 0.01µs and the number of elements for
the fixed FEM is 16000. The adaptive solution is chosen so that it has comparable accuracy with the one for
the fixed mesh solution. A comparison of the execution times for the fixed and adaptive methods shows that the
adaptive procedure delivers an order of magnitude improvement in performance.



Table 4. L1 error in the displacement distribution at T = 100µs.

τ 0.2 µs 0.1 µs 0.05 µs 0.025 µs
error, σ 2.74 ∗ 10−2 1.93 ∗ 10−2 1.35 ∗ 10−2 9.54 ∗ 10−3

error, u 2.68 ∗ 10−3 1.64 ∗ 10−3 8.02 ∗ 10−4 4.34 ∗ 10−4

Table 5. Execution times for fixed and adaptive meshes

Time Fixed Mesh Adaptive Mesh

Elements Time (min) Elements Time (min)
10 µs 16000 56 161 1:12
20 µs 16000 113 199 2:37
40 µs 16000 226 256 6:10
80 µs 16000 451 301 15

3.3. Square pulse impact loading problem

A more realistic initial-boundary value problem is one for which, instead of step loading, the boundary condition
is a square pulse, that is

σ0(t) =







0 for t ≤ 0
σ0 for 0 < t < tpulse
0 for t ≥ tpulse

(10)

where tpulse is the duration of the pulse. Due to the complicated constitutive response and boundary conditions
there is no analytical solution to be compared with. Moreover, there are unresolved questions regarding the
uniqueness of the weak solution for times t > tpulse when unloading takes place.

The stress level used for the numerical simulation is σ0 = 800MPa and the initial temperature is TR =
320 ◦K > Aof . The same material data as the one from the previous section is used with the exception that
the value for the difference in the specific entropies is changed to ρ∆s0 = 3.5 × 10

5. The stress level is chosen
so that the full adiabatic hysteresis loop can be realized. The pulse length is tpulse = 10µs and the time step is
t = 0.001µs. The simulation time is 100µs.

The evolution of the stress and temperature in the rod up to 90µs is shown in Figures 4 and 6. The two-shock
solution for the stress is clearly visible at the end of the pulse load at t = 10µs (Figure 4). The temperature
profile (Figure 6) also has two shocks. The maximum temperature T0 = 378.8

◦K is achieved in the region of full
phase transformation. The jump in the elastic shock is Tel − TR = 0.66

◦K and for this reason it is not clearly
visible in the figure.
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Figure 4. Stress profile at different instances of time for a square pulse in adiabatic loading
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Figure 5. Magnified view near the left end. The unloading (10µs) produces two right-travelling shock waves (20µs).
The faster unloading wave reflects off the transformation shock (≈ 21µs) and forms a left-travelling wave (24µs). What
follows is a series of complicated reflections that gradually kill the initial non-linear shock.
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Figure 6. Temperature profile at various times. The jump at the forward transformation shock is T0 − Tel = 58.2 ◦K.
The elastic shock is not visible clearly because of its small magnitude of Tel − TR = 0.66 ◦K.

The most noticeable feature observed in Figure 5 is the structure of the unloading pulse. Again a two wave
shock structure is seen that corresponds to the initial elastic unloading and the following reverse transformation
M t → A as can be seen from the stress profile at 10 and 20µs. Both unloading shocks travel faster than
the forward phase transformation shock. When the faster unloading front catches up with the forward phase
transformation shock (t ≈ 22µs) a left-travelling reflection is generated. The left-travelling wave, as seen for
t = 24µs, partially reflects from the slower unloading shock and partially continues (t = 26µs) until it reflects
off the left end of the rod. A complicated series of reflection waves follows. The first reflection results in
approximately 34% decrease of the peak stress level (t = 24µs). The picture becomes even more complicated
when the slower unloading shock eventually catches up with the forward travelling phase transformation shock.
Eventually the peak stress levels are reduced to values below σel, the critical stress corresponding to the onset
of phase transformation. The temperature profile at t = 90µs is hardly visible because the material is entirely in
the elastic range and the temperature in the rod is very close to the reference temperature. The large amounts
of latent heat generated during the initial loading phase are gradually consumed in the reverse transformation
as the stress is reduced within the elastic limits.

For pulse loading it is physically meaningful to compute the energy dissipation due to the phase transforma-
tion. If P (τ) is the work done by the external forces at the left end of the rod from t = 0 up to t = τ , K(τ)
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Figure 7. Energy dissipation for a 10 µs square pulse.

is the kinetic energy of the rod at time t = τ and W(τ) is the stored elastic energy of the rod then the energy
dissipation is defined by

D(τ) =
P (τ)− (K(τ) +W(τ))

P (τ)
(11)

The quantities P , K and W given can be easily computed numerically at each time step.

The calculations show (Figure 7) that the dissipation level goes from 40% at the end of the pulse (t = 10µs) to
64% at t ≈ 22µs when the faster unloading wave reflects off the forward travelling transformation wave. The high
stress levels are then gradually reduced within the elastic limits. The energy dissipation reaches approximately
84% at 100 µs, shortly before the elastic front reaches the right end.

3.4. Dynamic Loading Experiment of an SMA rod

As a conclusion to the numerical study of wave propagation in NiTi SMA rods the adaptive FEM method is
used to analyze actual experimental data from an impact test. The test setup and the experiment are presented
in [6]. The test have been performed on a long NiTi SMA spceimen using a split-Hopkinson bar device under
conditions of detwinning of martensite. Recordings of the strains from 5 strain gauges mounted on the SMA
specimen have been obtained.

Based on the experimental results it has been determined that the most adequate model of the stress-strain
behavior in detwinning conditions is a phenomenological model. The model utilizes a polynomial curve fit for
the loading part of the hysteresis. The unloading is assumed linear elastic. This approach allows for correct
modelling of the inelastic detwinning deformation which does not exhibit an initial elastic response but exhibits
a gradually changing stiffness. The precise modelling of the stiffness is important as it directly influences the
propagation speed of the nonlinear waves in the SMA rod.

The results of the test along with the adaptive FE simulation are shown on Figure 8. The simulation covered
200µs which was the time needed by the wave generated in the SMA bar to traverse its length. It can be observed
that the timing of the waves as well as the peak strain levels of the numerical simulation are in good agreement
with the experimental results.

4. CONCLUSIONS

The problem of dynamic loading of one-dimensional polycrystalline SMA rods has been explored using fixed and
adaptive Finite Element techniques. FEM simulations were performed for SMAs experiencing both pseudoelastic
phase transformation as well as detwinning deformations. Computational solutions were shown to coincide with
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Figure 8. An adaptive FE analysis of experimental data under isothermal conditions and a curvefit of the hysteresis.

known analytical results. Nonlinear shock formation and velocities were captured correctly by the simulations.
The displacements and stresses obtained by the standard semi-discrete FEM approach were shown to converge to
the analytical values. The convergence in the the stresses was of the the best possible order given the regularity
of the piecewise constant solution.

The standard FEM approach for hyperbolic problems was complemented by an adaptive mesh refinement
technique. The utilization of the Zienkiewicz-Zhu error indicator lead to an order of magnitude decrease of the
computational time without compromising the accuracy of the numerical solution. Energy dissipation calcula-
tions for stress-induced phase transformation showed that the strain energy can be reduced by 80-90% which
suggests that SMAs can be used effectively as shock-absorption devices. Accurate predictions of actual exper-
imental data were also obtained. Both the wave timings, shape and peaks were modelled within experimental
error.

The material and environmental conditions used in the Hopkinson bar experiment used to correlate with the
numerical simulations correspond to a detwinning deformation of the martensitic phase, but the methods can be
easily adapted to stress induced martensitic transformation in tests at higher temperatures. Such experiments
can be used to validate the numerical approach over a much broader range of thermomechanical paths. The-
oretical work can also be extended to more realistic 2-D and 3-D geometries. Complicated SMA components
and structures can be simulated to better understand the nonlinear wave propagation phenomena as well as the
practical aspects of their energy dissipation capabilities. More refined models which incorporate both detwinning
and pseudoelastic deformations simultaneously and also predict accurately the smooth hysteresis of the detwin-
ning deformation will be extremely helpful in further studies of wave propagations in polycrystalline SMAs and
are currently under consideration.
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