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Abstract 
We present a novel approach for flow simulations through 
naturally-fractured vuggy carbonate reservoirs. This approach 
generalizes upscaling methods which have been successfully 
used to perform reservoir simulations on geological (fine) 
scales. Typically, vugular porous media is described using 
both Stokes and Darcy’s equations at the fine-scale. We 
propose the use of simplified model based on Stokes-
Brinkman equations. Stokes and Darcy equations can be 
obtained from these equations by appropriate choice of 
parameters. Moreover, in the presence of damaged zones 
between vugular regions and Darcy regions, Stokes-Brinkman 
equations allow a seamless transition. 
 
The upscaling of fine-scale equations is addressed within 
homogenization theory. Appropriate local problems are solved 
to compute the effective permeabilities, which are further used 
for the simulations on the field scale. We present numerical 
results for homogeneous and heterogeneous background 
permeability fields. Our results show that the coarse-scale 
permeability field is greatly affected when the background 
permeability is heterogeneous. This is due to the fact that the 
high flow channels connecting some of the vugs significantly 
alter the upscaled permeability. We compare the coarse-scale 
pressure obtained from upscaled equations with the averaged 
fine-scale pressure. The results are in agreement which 
indicates that the upscaled models are accurate for practical 
purposes. 
 

 

1. Introduction 

Subsurface flows, as they occur in the production of 
hydrocarbons, are affected by heterogeneities in a wide range 
of length scales. The flow and transport of multi-phase flows 
are further complicated due to the presence of vugs. The 
geometries, locations and connectivities of vugs greatly affect 
the flow in reservoirs. The connectedness of the vugs can 
create high flow channels which significantly change oil 
production.  
 
Because of the large uncertainties in the locations and 
geometries of the vugs, it is very difficult to numerically 
resolve the flow and transport through such systems. Thus, 
some type of upscaling or coarsening is needed to simulate 
flow and transport processes through vugular heterogeneous 
porous media. The main idea of upscaling techniques is to 
form coarse-scale equations with some prescribed analytical 
form that may differ from the underlying fine-scale equations. 
Our objective in this paper is to address the upscaling of flow 
through heterogeneous vugular media. 
  
Typically, vugular porous media is described using both 
Stokes’  and Darcy’s equations at the fine-scale. In this paper, 
we propose the use of Stokes-Brinkman equations for fine-
scale simulation. Stokes-Brinkman equations can be reduced 
to Stokes or Darcy equations by appropriate choice of the 
parameters. Moreover, in the presence of damaged zones 
between vugular regions and Darcy regions, Stokes-Brinkman 
equations allow a seamless transition. Due to uncertainties 
associated with interface locations between vugs and the rock 
matrix, Stokes-Brinkman equations introduce a somewhat 
coarse model that does not require precise interface locations 
and avoid local grid refinement issues that are needed near the 
interfaces.  
 
To upscale flow through vugular regions is an important topic 
and addressed in previous findings (see e.g., Arbogast et al. 
[1,2]). Arbogast et al. use the homogenization theory and 
show that the coarse-scale equations are described by Darcy’s 
law. The authors present a procedure for the computation of 
effective permeabilities. Our approach shares similarities with 
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that of Arbogast et al. Arbogast et al. [1] use the coupled 
Darcy and Stokes equations at the fine-scale. In the context of 
Stokes-Brinkman equation, one can also obtain the 
homogenized equations for the regions with enclosed vugs. In 
a manner similar to that of Arbogast et al. [1], it can be shown 
that the upscaled equations are governed by Darcy’s law. 
Moreover, the upscaled permeabilities can be computed using 
the solutions of the local problems. The upscaled quantities 
are greatly affected by the vug geometries and locations. For 
vugs that are connected, the upscaled permeability can be high 
and in this case, most of the flow is through vugular regions. 
We consider isolated vugs within a heterogeneous 
permeability background. In this case, the interaction between 
permeability field and vugs plays a crucial role in the 
calculation of upscaled permeabilities. Vugs that are isolated 
in low permeability regions, may not yield high effective 
permeabilities. On the other hand, vugs which are connected 
via high permeability channels lead to high effective 
permeability.  
 
The effective permeability is further used to solve single-
phase flow equations on the coarse-grid. We present several 
test examples, where the coarse-scale solution and the 
averaged fine-scale solution are compared. Our results show 
that the upscaled model produces accurate coarse-scale 
solution. In order to numerically solve the fine-scale problem, 
we employ a mixed finite element method and discretize the 
Stokes-Brinkman equations using Taylor-Hood elements. 
 
The paper is organized as follows. In the next section, we 
discuss fine-scale equations. This is followed by presenting 
the upscaled equations in Section 3. Finally, in Section 4, we 
present several numerical examples, which include fine-scale 
numerical simulations, as well as computing effective 
permeability and coarse-level simulations. 

2. Fine-scale equations 

We consider the fluid flow in the region partly occupied with 
vugs. The flow equations within vugs are described by Stokes 
equations:  

                                 
0

0

pµ− ∆ + ∇ =
∇ ⋅ = ,

u

u
 (1) 

where µ  is the viscosity of the fluid, p  is the pressure, and 

u  is the velocity. The flow equations within the rock matrix 
are described by Darcy’s law:  
  

                                 
p

q

= − ∇
∇ ⋅ = ,

u k

u
 (2) 

where p  is the pressure, u  is the velocity field, q  is the 

source term and k  is the permeability tensor. Darcy’s 
equation can be derived from Stokes equation using 
homogenization theory under the assumption of scale 
separation (see e.g., [1]). When Darcy’s flow and Stokes flow 
are considered together, some interface conditions are needed 
for the well posedness of the problem. These conditions are 
well known (see e.g., [2,5,9,8]) and typically describe the 

continuity of the flux, normal stresses, and also impose certain 
restrictions on the tangential velocity field. More precisely, 
continuity of flux is given as  
                                     [ ] 0n⋅ = ,u  (3) 

where [ ]⋅  describes the jump. Continuity of the normal fluxes 
can be written as  

                              2 f f dD n n p pµ ⋅ ⋅ = − ,u  (4) 

where ( )1
2( ) ji

j i

uu
i j x xD

∂∂
, ∂ ∂= +u , fp  is the pressure in vugular 

region, dp  is the pressure in the rock matrix, and fu  is the 

velocity in vugular region. Finally, one also needs to impose 
corrections for tangential velocity field due to fluid flow from 
the rock matrix to vugular region. These relations are 
described by Beavers-Joseph-Saffman conditions [5,9,8].  
 
In this paper, a somewhat unified and simplified approach is 
undertaken. In particular, the fine-scale equations are modeled 
using Stokes-Brinkman equations [6,4,3,10]:  

                              
1 0

0

pµ µ− ∗+ ∇ − ∆ = ,
∇ ⋅ =

k u u

u
 (5) 

where µ∗  is an effective viscosity. Note that by choosing 

0µ∗ =  in the vugular region, equation (5) reduces to Darcy’s 

law. On the other hand, by choosing = ∞k  (or very large), 
(5) reduces to Stokes equations. Thus, one can obtain Stokes 

or Darcy’s equations by suitable choices of the parameters µ∗  

and k  by defining them in vugular and rock matrix regions, 
respectively.  
 
In the porous region ( < ∞k ) it is known [12] that for 
moderately small permeabilities and pore volume fractions, 

the diffusive term µ∗∆u , where µ∗  takes values close to the 

fluid viscosity µ , intoroduces only a small perturbation of the 

velocity and pressure fields as compared to a pure Darcy law 

( 0µ∗ = ). Thus, in our fine-scale model it is assumed 

µ µ∗ = , where µ  is the viscosity of the fluid. In the vugular 

(free flow) region one has µ µ∗ =  and the permeability is 

taken to be infinite, thus eliminating the 1µ −k u  term in (5) 
and reducing it to the Stokes equation (1). In Section 4, we 
present a numerical example which shows that the Stokes-

Brinkman solution with the choiceµ µ∗ =  in the porous 
region is very close to the solution of coupled Stokes and 
Darcy equations. 
 
The Stokes-Brinkman equations (5) and the coupled Stokes-
Darcy system [1,2] are closely related. It can be shown (see 
e.g. [12] and the references therein) that by selecting values 

for µ∗  in the porous region in the Sokes-Brinkman system 

(5), which are different from µ , one can introduce boundary 

layers at the rock/vugs interface. These boundary layers mimic 
the Beavers-Joseph-Saffman interface conditions for the 
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coupled Stokes-Darcy equations. Thus, jump-like conditions 
for the tangential velocity component at the interface can also 
be prescribed via equations (5), by selecting an appropriate 

value for µ µ∗ ≠ . However, to make such a choice (or, 
equivalently, to select appropriate parameters for the Beavers-
Joseph conditions in the context of coupled Stokes-Darcy 
equations) it is necessary to have either detailed knowledge of 
the porous microstructure of the rock, or extensive 
experimental data. Moreover, Beavers-Joseph interface 
conditions for coupled Stokes Darcy equations are most 
appropriate for flows tangential or almost tangential to the free 
flow/porous interface. In the case of disconnected vugs 
immersed in a porous rock, it is more reasonable to assume 
continuity of the velocity (both tangential and normal) for 

equations (5) where the choice µ µ∗ =  in the porous region 
is appropriate. As the numerical simulations of Section 4 
show, the flow tends to be mostly normal to the interface, for 
disconnected vugs transferring mass between the rock and the 
vug.  
 
The use of the Stokes-Brinkman equations for the fine-scale 
model over the more traditional, coupled Stokes-Brinkman 
equations has certain advantages for vugular media. Typically, 
in vugular porous media, there are large uncertainties with the 
location of the boundaries of the vugs. Also, these boundary 
regions are often eroded compared to the interior of the rock. 
The Stokes-Brinkman equations allow us to have seamless 
transition between the rock and the vug by varying the 
permeability field close to the interface. Moreover, from a 
numerical point of view, it is easier to solve a monolithic 
system such as Stokes-Brinkman, in contrast to a coupled 
Darcy-Stokes system which requires an additional iterative 
scheme. Also, in the near interface region, Stokes-Brinkman 
equations allow us to avoid the typical grid refinement issues 
necessary for resolving the interface between Darcy and 
Stokes region.  

3. Coarse-scale equations 

In this section, we describe the coarse-scale equations. In 
particular, we will be interested in upscaling vugular regions 
that can be enclosed within coarse-block regions with 
heterogeneous permeability. It was shown in [2] that the 
upscaled equation in the case of coupled Darcy’s and Stokes 
equation is Darcy’s law. For Stokes-Brinkman fine-scale 
equations, it can be also shown that the upscaled equations are 
described by Darcy’s equations, where the upscaled 
permeability strongly depends on the vugs and the background 
permeability field. The local problems are computed using  

                         
1

0

pµ µ ξ− ∗+ ∇ − ∆ = ,
∇ ⋅ =

k u u

u
 (6) 

where ξ  is unit body force and µ µ∗ = . Equation (6) is 
subject to some boundary conditions (typically periodic). The 
boundary conditions do not play a significant role in 
computing the effective coefficients if there is a scale 
separation. We have tested periodic boundary conditions as 
well as no-flow type boundary conditions with unit pressure 

gradient. Given the solution of the local problem, the upscaled 
permeability is computed from  

                                ξ∗ = ,k u  

where  is the volume average over the coarse block. One 

can also choose the formulation based on dissipative energy.  
 
Once the upscaled permeability is computed, the coarse-scale 
equations are solved in the global domain:  

                              
p

q

∗= − ∇
∇ ⋅ = ,

u k

u
 (7) 

where q  is the source term. This approach shares similarities 
with multiscale approaches presented in [2]. In multiscale 
approaches, the basis functions are constructed using local 
solutions (6). Then these basis functions are coupled via 
global formulation of the problem. Multiscale approaches 
allow us to recover the fine-scale features of the velocity field. 
If (7) is written in a finite volume context, our approach 
computes the effective transmissibilities via local solutions. In 
this sense, our approach shares similarities with multiscale 
approaches. We are currently implementing the multiscale 
finite volume approach.  
 
In the presence of large vugs, Stokes-Brinkman equations are 
used in the overall region, with corresponding upscaled 
permeabilities. One can also keep Stokes equations within 
large vugs. As is mentioned earlier, the interaction of vugs and 
background heterogeneities play a crucial role in the 
computation of upscaled permeabilities. This is more evident 
for enclosed vugs that are considered in this paper. If the vugs 
are surrounded by low permeability regions, then the vugs do 
not significantly alter the upscaled permeabilities. However, if 
vugs are connected via high permeability channels, then vugs 
can dramatically alter the overall upscaled permeability.  

4. Numerical results 

We now present numerical results. The systems considered are 
representative of cross sections in the subsurface. We will 
consider both homogeneous permeability background as well 
as heterogeneous permeability background. For simplicity, we 

set the system length xL  in the horizontal direction x  to be 

the same as the formation thickness zL ; in the results 

presented below, 1x zL L/ = . In the case of heterogeneous 

permeability fields, the fine grid permeability fields are 

realizations of prescribed overall variance (quantified via 2σ , 

the variance of logk ), correlation structure and covariance 
model. We consider models generated using GSLIB 
algorithms [7], characterized by spherical variogram. For the 
spherical variogram model, the dimensionless correlation 

lengths (nondimensionalized by xL  and zL  respectively) are 

designated xl  and zl .  

 
In order to numerically solve the fine-scale problem (5), as 
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well as the cell problems (6) we use a mixed finite element 
method for the Stokes-Brinkman equations in the primary 
variables  u  and p . We use Taylor-Hood elements 

(continuous quadratic velocity and continuous linear pressure, 
for more details, see e.g. [11]) on unstructured triangular grids. 
The linear systems resulting from this finite element 
discretization are symmetric and indefinite. These are solved 
using preconditioned conjugate gradient method for the 
pressure schur complement. For more details on these types of 
numerical the reader is referred to [11]. 
 
Our first numerical example compares the solution of coupled 
Stokes and Darcy equations [1,2] with the solution of Stokes-
Brinkman equations (5). In Fig.1, the velocity and streamlines 
are plotted for a single vug inclusion and homogeneous 
background permeability field using Stokes-Brinkman 

equations (5) with µ µ∗ = . In Fig.2, the same quantities are 
plotted for the solution of coupled Stokes and Darcy 
equations. There is almost no difference in velocity fields. The 
latter justifies the use of Stokes-Brinkman equations with 

µ µ∗ = . Note that one can always take µ∗  to be sufficiently 
small to obtain Darcy’s equation in the rock matrix region. 
The objective of these numerical examples is to show that we 

do not need to tune the parameter µ∗ . In Fig.3 and Fig.4, we 
compare the pressure profiles for Stokes-Brinkman and 
coupled Stokes and Darcy equations. Because there is almost 
no difference between pressure fields, these results again 

suggest that µ µ∗ =  can be used in our fine-scale model.  
 
In the next set of numerical tests, we consider a representative 
elementary volume with a number of small vugs and 
homogeneous permeability background. The vugs are 
distributed randomly throughout the volume and the 

permeability field is taken to be 1010−=k I  (in SI units, 
2m ), where I  is the identity matrix. As for boundary 

conditions, we consider no flow at the top and bottom and 
zero Neumann for fluid stress at the inlet and outlet 
boundaries and unit body force in horizontal ( x ) direction. As 
the body force term can be absorbed into the pressure and vice 
versa (observe that (1,0)x∇ = ) and the viscous part of the 

fluid stress tensor x  is  orders of magnitude smaller then the 
pressure, these boundary conditions are equivalent to 
specifying a pressure drop of 1 between the left and right side 
of the domain and no body force. In Fig. 5, the velocity field 
(as well as streamlines) and pressure field are depicted. One 
can observe that the streamlines go through vugs which 
indicate that vugs represent high permeability regions. The 
upscaled permeability is computed for this representative 
elementary volume and is apprixametly 30% higher compared 
to the homogeneous, background permeability. The 
corresponding fine-scale solution of Stokes-Brinkman 
equation is plotted in Fig.5. This suggests that the presence of 
the vugs significantly increases the permeability.  
 
In our next set of numerical experiments, we would like to 
solve the coarse-scale equations and compare the averaged 

fine-scale solution and the coarse-scale solution. Our first 
example is homogeneous isotropic background permeability 
field with randomly distributed ellipsoidal vugs. The  
boundary conditions from the previous example are used. 
First, we present the fine-scale solution in Fig. 6. On the left 
plot, the velocity field and the streamlines are plotted. On the 
right plot, the pressure field is plotted. Overall upscaled 
permeability is approximately 15% higher than the 
background permeability. Because of ellipsoidal shape of the 
vugs, we observe anisotropy in the upscaled permeability. We 
divide the whole domain into 5 5×  coarse grid regions and in 
each region the upscaled permeability is computed. The results 
are plotted in Fig.7 for horizontal component of the 

permeability field ( 11k ). From this figure we observe that in 

the coarse regions with high concentration of vugs, the 
upscaled permeability is higher. In Figure 8, we plot the 
corresponding coarse-scale pressure. We have compared this 
coarse-scale pressure with the averaged coarse-scale pressure 

obtained from fine-scale solution. The 2L  relative error was 

found to be less than 2% and there is no visual difference in 
the plots. For this reason, we do not present the plot of 
averaged fine-scale pressure field. This result suggests that the 
proposed upscaling method provides accurate coarse-scale 
solution for homogeneous background permeability field.  
 
Our final set of numerical tests are devoted to the case with 
heterogeneous background permeability as partly shown in 
Fig. 10. The vug population (size, shape and locations) is 
identical to the previous example. However, the permeability 
field, shown in Fig.10, is variable. It has long correlation 

length in the horizontal direction ( 0 4xl = . ), smaller 

correlation length in the vertical direction ( 0 1zl = . ), and is 

generated using the spherical variogram as preciously 
discussed. The locations of the vugs are the same as those in 
Fig. 6. In Fig.9, the fine-scale solution is plotted for velocity 
and pressure fields. We see from this figure that the 
heterogeneous permeability field creates additional high flow 
channels for the vugs which can enhance connectivity of the 
media. This is more evident if one compares Fig.6 and Fig.9. 
The presence of the background heterogeneous permeability 
field alters the streamline significantly. Comparing Fig.7 and 
Fig.11, one can also observe that the upscaled permeabilities 
are quite different for homogeneous and heterogeneous 
background permeabilities. The highest permeability in the 
case of heterogeneous background permeability is 

10 23 36 10 m−. ∗ , while the highest permeability in the case of 
homogeneous background permeability is only 

10 21 52 10 m−. ∗ . Moreover, one can also observe different 
pattern structures in the graphs of upscaled permeabilities. The 
upscaled pressure is computed using upscaled permeabilities, 
and the result is depicted in Fig. 12. Again, we compared the 
upscaled pressure with averaged fine-scale pressure and the 

relative 2L  error is less than 5%. There is no visual 

difference between two plots. For this reason, we do not 
include the plot of averaged fine-scale permeability field. This 
result again suggests that the proposed upscaling method 
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provides an accurate coarse-scale solution for heterogeneous 
background permeability field.  

5. Discussion and Summary 

The results of the previous section demonstrate that a 
simplified fine-scale model based on Stokes-Brinkman 
equations can be used to describe the flow through vugular 
porous media. Our upscaled results show that the 
heterogeneous background permeability field can give very 
different results compared to homogeneous background 
permeability with the same vug locations. In particular, the 
presence of high permeability channels connecting the vugs 
can increase substantially the overall permeability. The 
numerical tests show that the proposed upscaling is accurate 
and can be used in practice for upscaling of flow through 
vugular porous media.  

Nomenclature 
k  Permeability tensor 

l  Correlation length 

L  Length 
p  Pressure 
q  Source term 
u  Velocity 
µ  Viscosity 

2σ  Variance of  log( )k  

I  Identity tensor 

Superscripts 

∗  upscaled or effective quantity  
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Figure 1. Velocity and streamlines for a single vuggy inclusion. 
Periodic boundary conditions.  

Properties: 10 210 m−=k , 0.001Pa sµ = ⋅  (water), µ µ∗ = . 
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Figure 2. Velocity and streamlines for a single vuggy inclusion. 
Periodic boundary conditions.  

Properties: 10 210 m−=k , 0.001Pa sµ = ⋅   (water). Coupled 
Stokes and Darcy equations. 

Figure 3. Pressure for a single vuggy inclusion. Periodic 
boundary conditions.  

Properties: 10 210 m−=k , 0.001Pa sµ = ⋅  (water), µ µ∗ = . 

 
Figure 4. Pressure for a single vuggy inclusion. Periodic 
boundary conditions.  

Properties: 10 210 m−=k , 0.001Pa sµ = ⋅  (water). Coupled 
Stokes and Darcy equations. 
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Velocity Magnitude and streamlines 

 
Variation in the pressure distribution 

Figure 5.  Relative elementary volume with homogenous permeability background. 

Parameters: Isotropic permeability 9 210 m−=k , 0.001Pa sµ µ∗ = = ⋅ . 

Boundary conditions: No flow at top and bottom side ( 2 0=u ), zero Neumann for the fluid stress at the left and right side and unit 

body force in the x-direction.  

Upscaled permeability: 9 2
11 1 1.275 10 mµ −= = ∗k u , 12 2

12 2 5.16 10 mµ −= = ∗k u . 

 

 
Velocity Magnitude and streamlines 

 
Variation in the pressure distribution (after subtracting 1-x) 

Figure 6. Velocity and pressure in vugular domain with homogeneous permeability background (5x5 coarsening will be performed). 

Parameters: Isotropic permeability 10 210 m−=k , 0.001Pa sµ µ∗ = = ⋅ . 

Boundary conditions: No flow at top and bottom side ( 2 0=u ), zero Neumann for the fluid stress at the left and right side and unit 

body force in the x-direction. 

Upscaled permeability (for the entire domain): 10 2
11 1 1.159 10 mµ −= = ∗k u , 12 2

12 2 2.124 10 mµ −= = − ∗k u . 
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Figure 7. Homogenized absolute permeability field ( 11 / µk ). 

The values are computed by splitting the domain into 5x5 cells 
and solving two cell problems per cell. The cell problems are set 
up with periodic boundary conditions and unit force in the x-

direction (to obtain 11k ) and y-direction (to obtain 22k , not 

shown). The permability values are then placed at the cell centers 
and interpolated across the domain by bilinear interpolation. 

 
Figure 8. Coarse scale solution for the pressure.  
Boundary conditions: 1p =  at the left side, 0p =  at the 

right side and zero Neumann at the top and bottom sides. The 

permeability field is a diagonal tensor with 11k  and 22k  

components. 11k  is shown in Fig.7.  

 

 
Velocity magnitude and streamlines 

 
Variation in the pressure distribution (after subtracting 1-x) 

Figure 9. Velocity and pressure in vugular domain with heterogeneous permeability background (5x5 coarsening will be performed). 

Parameters: k=k I is isotropic and variable (shown in Figure 10) with an average 10 210k m−= , 0.001Pa sµ µ∗ = = ⋅ . 

Boundary conditions: No flow at top and bottom side ( 2 0=u ), zero Neumann for the fluid stress at the left and right side and unit 

body force in the x-direction. 

Absolute upscaled permeability (for the entire domain): 10 2
11 1 1.566 10 mµ −= = ∗k u , 12 2

12 2 1.838 10 mµ −= = − ∗k u   
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Figure 10. Log plot of the permeability field. The actual 

permeability used is exp( )C= ⋅k I , where C is selected so that 
10 210 m−=k .  

 

 
Figure 11. Homogenized absolute permeability field ( 11 / µk ). 

The values are computed by splitting the domain into 5x5 cells and 
solving two cell problems per cell. The cell problems are set up 
with periodic boundary conditions and unit force in the x-direction 

(to obtain 11k ) and y-direction (to obtain 22k , not shown). The 

permability values are then placed at the cell centers and 
interpolated across the domain by bilinear interpolation. 

 

  
Figure 12. Coarse scale solution for the pressure.  
Boundary conditions: 1p =  at the left side, 0p =  at the 

right side and zero Neumann at the top and bottom side. The 

permeability field is a diagonal tensor with 11k  and 22k  

components. 11k  is shown in Fig.10. 

 
 

 

 


