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Introduction

■ There are many processes that involve
multiple scales:
◆ Fluid flow in porous media (soil, porous

rocks, etc.)
◆ Elasticity problems in composite materials

(adobe, concrete, asphalt, wood, etc.)
◆ Modeling of suspensions, mixtures of

several fluids, etc.
■ Numerical simulations of fine-scale features

is often impossible due to scale disparity
■ Some type of upscaling method is needed.

1cm

1 mm1 mm
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Presentation outline

■ Brief overview of upscaling methods in deformable porous
media

■ The Fluid-Structure interaction (FSI) problem at the
microscale and numerical methods for its solution

■ An asymptotic upscaling result of the FSI problem in channel
geometries and comparisons with computational solutions

■ Numerical upscaling of flow in deformable porous media
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Upscaling of flow in rigid porous media

■ Assumptions: Rigid, impermeable skeleton, Stokes flow.
■ Darcy, 1856 - a phenomenological theory suggesting that

the macroscopic velocities v are proportional to the
pressure gradient ∇p:

v = −
1

µ
K∗∇p, (1)

where K∗ is a permeability tensor, as well as
conservation of mass:

∇ · v = 0 ⇐⇒ ∇ · (K∗∇p) = 0. (2)

■ Derivation of Darcy’s law by can be done by asymptotic
expansion [Sanchez-Palencia and Ene, 1975]:

vε = ε2v0 + ε3v1 + . . . ,

pε = p0 + εp1 + . . .

where ε is the small parameter of the problem.
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Upscaling of deformable porous media
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■ Assumptions: elastic skeleton, small displacements of the interface
compared to the pore size.

■ The fine scale problem is the weakly coupled Fluid-Structure interaction
problem.

■ Biot [1941] - a phenomenological theory of consolidation
■ Auriault and Sanchez-Palencia [1977] - Derivation of Biot’s law by asymptotic

expansion in the stationary case
■ Sanchez-Palencia [1980], Burridge and Keller [1981] - Derivation in various

time-dependent cases
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Biot’s law

■ The macroscopic, quasi steady-state equations (ignoring acoustic effects in
the skeleton) have the form:

∇ ·
(

L∗ : e(u(0)) − A∗p(0)
)

= 0, (3)

∇ ·

(

K∗∇p(0) − φf

∂u(0)

∂t

)

= A∗ : e

(

∂u(0)

∂t

)

+ β∗ ∂p(0)

∂t
. (4)

where φf is the pore volume fraction. L∗, K∗, A∗ and β∗ are macroscopic
coefficients obtained by solving 3 sets of cell problems.

■ The macroscopic coefficients are:
◆ L∗ is the macroscopic elasticity tensor of the skeleton.
◆ K∗ is the skeleton’s Darcy permeability.
◆ A∗, β∗ are fluid-solid coupling coefficients.

■ The macroscopic velocity v(0) is given by:

v(0) = φf

∂u(0)

∂t
− K∗∇p(0). (5)
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Nonlinear extensions to Biot’s law

■ Various extensions have been proposed with
less restrictive assumptions. For example,
Lee and Mei [1997] assume:

◆ Linear Elasticity.
◆ Cell displacement can be decomposed into a

rigid body motion + infinitely small
deformation.

◆ The rigid body motion is of the same order
as the cell size.
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■ The macroscopic equations then become nonlinear:

∇ ·
(

L∗ : e(u(0)) − A∗p(0)
)

= C
(

F∗ : e(u(0)) + α∗p(0)
)

: ∇u(0) (6)

∇ ·

(

K∗∇p(0) − φf

∂u(0)

∂t

)

= A∗ : e

(

∂u(0)

∂t

)

+ β∗ ∂p(0)

∂t
(7)

+ C
(

J∗ : e(u(0)) + M∗p(0)
)

∇p(0)
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Objectives

We consider an elastic skeleton, without restrictions on the displacements:
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■ Applications to filters, microfluidic devices, geomechanics problems.
■ Present a numerical method for the solution of the coupled fluid-stricture

problem at the microscale
■ Derive an asymptotic solution for flows in simple channel geometries and

verify against the numerics
■ Present a hybrid Multiscale FEM model for upscaling general pore

geometries
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Fluid-structure interaction problem

■ Find ΓI , v, p and u such that:

ΓI =
{

p + u(p)|∀p ∈ ΓI
0

}

, (8)

−µ∆v + ∇p=b in Ωf ,

∇ · v=0 in Ωf ,

−∇ · (S (e (u), ξ))=b0 in Ωs
0,

(9)

(S (e (u), ξ))n0 = det (∇u + I) (−pI + 2µe (v))) (∇u + I)
−T

n0 on ΓI
0. (10)
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Weak form of the coupled system

■ Let is introduce the form

gΓI
0

(v,u, p,w) =

∫

ΓI
0

{

det(∇u + I)(−pI + 2µe(v)) (∇u + I)
−T

}

wds.

■ The FSI problem (9)-(10) can be restated in a weak form:
Find the interface ΓI , the deformed configuration of the fluid domain Ωf , the displacements

u ∈
[

H1(Ωs
0)

]d
, velocity v ∈

[

H1
0

(

Ωf
)]d

and pressure p ∈ L2
0(Ω

f ) such that

DΩf (v,w) − (p,∇ · w)Ωf =(b,w)Ωf , ∀w∈
[

H1
0

(

Ωf
)]d

,

−(∇ · v, q)Ωf =0, ∀q ∈L2(Ωf ),

aΩs
0
(u,w)=(b0,w)Ωs

0
+ gΓI

0

(v,u, p,w), ∀w∈
[

H1
D (Ωs

0)
]d

,

Γ={p + u(p)|∀p ∈ Γ0} .

(11)
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Discretization of the FSI problem

■ Let us introduce finite-dimensional subspaces Uv, Up and Uu for the velocity,
pressure and displacements, respectively:

Uv =
[{

v ∈ C0(Ωf )|v is quadratic polynomial on ∀τ ∈ T f
h

}]d

⊂
[

H1(Ωf )
]d

,

Up =
{

p ∈ C0(Ωf )|p is linear on ∀τ ∈ T f
h

}

⊂ H1(Ωf ) ⊂ L2(Ωf ),

Uu =
[{

u ∈ C0(Ωs
0)|u is linear on ∀τ ∈ T s

h

}]d
⊂

[

H1(Ωs
0)

]d
.

■ Conformity between the fluid T f
h and solid T s

h triangulations is maintained on
the reference configuration of the interface Γ0.

■ The first three equations in (11) lead to the nonlinear system of algebraic
equations







A(u) CT (u) 0

C(u) 0 0

0 0 K













v

p

u






=







f1

0

f2 + g(u,v,p)






, (12)
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Direct iteration for the FSI problem

■ Considering the following iterative approach for solving the FSI problem (11):
◆ Solve the Stokes equation in the fluid domain treating the solid as a rigid

body;
◆ Transfer the forces to the solid;
◆ Calculate the displacement field in the solid and then update the fluid

domain.
■ Starting with u0 = 0, v0 = 0, p0 = 0, use a fixed point iteration to solve (11):







A(uk) CT (uk) 0

C(uk) 0 0

0 0 K













vk+1

pk+1

uk+1






=







f1

0

f2 + g(uk,vk+1,pk+1)






(13)

■ The algebraic systems of linear equations for both subproblems are solved
by the Conjugate Gradient Method:
◆ The elasticity matrix K is preconditioned by a MIC − 0 displacement

decomposition preconditioner [Blaheta, 1994]
◆ A pressure Schur complement approach is used for the Stokes

system [Turek, 1999]
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Channel with deformable segment

Final configuration of the fluid domain Ωf and pressure profile. (Figure not drawn to scale).

Profile of the horizontal velocity component (Figure not drawn to scale).
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Deformable segment: Flow rate vs. pressure
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Figure 1: Channel permeability as a function of different flow rates.
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Flow in elastic channel

■ Consider a long channel with elastic walls

x

y

l

δ

l

δ

L

( )xγ
fΩ

sΩ

sΩ

■ The fluid and solid domains in the deformed configuration are defined as

Ωf = {(x, y) : 0 < x < 1, 0 < y < γ(x))} ,

Ωs = {(x, y) : 0 < x < 1, γ(x) < y < 1 + δ)} ,
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Asymptotic expansion of FSI problem

■ Let the channel thickness 2l be much smaller than its length L and introduce
the small parameter

ε =
l

L
(14)

■ Consider an asymptotic expansions with respect to ε of the field variables
(velocity, pressure, displacement) of the FSI problem:

v1 = v0
1 + εv1

1 + ε2v2
1 + ...

v2 = v0
2 + εv1

2 + ε2v2
2 + ...

p = p0 + εp1 + ε2p2 + ...

u1 = u0
1 + εu1

1 + ε2u2
1 + ...

u2 = u0
2 + εu1

2 + ε2u2
2 + ...

The expansion is with respect to the deformed configuration.
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Asymptotic expansion: The fluid domain

Substituting v1, v2 and p in the Stokes system and examining various powers of ε gives:

p
0 = p

0(x),
∂

∂x

�

γ
3(x)

∂p0

∂x

�
= 0 (15)

■ The above equations are independent of the solid type or interface displacements.

■ The second equation can be interpreted as a 1D nonlinear Darcy law. Indeed, fix x

and define, the y−average operator 〈·〉y:

〈φ(x, y)〉
y

:=
1

2

Z γ(x)

−γ(x)

φ(x, y)dy (16)

One then obtains that

〈v1(x)〉 = −
1

3lµ
γ

3(x)
∂p0

∂x
,

that is, equation (15) can be interpreted as the conservation of mass for a flow with

flux 〈v1(x)〉, driven by a pressure gradient ∂xp0(x). Also,

K := K(γ3(x), x) = −µ
〈v1(x)〉

∂xp0(x)
=

1

3l
γ

3(x) (17)
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Asymptotic expansion (cont.)

■ In order to evaluate the stresses in the solid, we assume a linear, isotropic material:

S = L : E = λs : tr(E)I + 2µsE

■ Under some additional assumptions on the solid (δ ∼ l and both u1 and u2 are of

order δ) on can solve the elasticity system and obtain the leading order terms in the
stress tensor:

S
s =

δ

l

2664 λs
∂u0

2

∂y
µs

∂u0
1

∂y

µs
∂u0

1

∂y
(λs + 2µs)

∂u0
2

∂y

3775+ O (ε)

■ On the other hand, Tf = −p0(x)I + O (ε) and using the interface condition one gets:

u
0
2 = 0 and γ(x) = l +

l

λs + 2µs

p
0(x),

⇒ K(x, p
0(x)) =

1

3l
γ

3(x) =
l2

3

�
1 +

1

λs + 2µs

p
0(x)

�3

.
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Long elastic channel: A typical solution

Final configuration of the fluid domain Ω
f and pressure profile.

Profile of the horizontal velocity component.
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Numerical experiments

Table 1: Comparisons of asymptotic results with numerical values

P 0 ||γ̄−γ||L2

||γ||L2

||K̄−K||L2

||K||L2

ε = 1
10 ε = 1

20 ε = 1
10 ε = 1

20

0.32 2.41 × 10−3 8.47 × 10−4 6.63 × 10−3 1.82 × 10−3

0.16 1.19 × 10−3 4.21 × 10−4 3.33 × 10−3 1.06 × 10−3

0.08 5.96 × 10−4 2.10 × 10−4 1.65 × 10−3 5.34 × 10−4

0.04 2.98 × 10−4 1.05 × 10−4 8.19 × 10−4 2.68 × 10−4
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Numerical upscaling

■ Macroscopic model for general 2D/3D geometries (Diffusion only)

∇ · (K (x, p∗,∇p∗)∇p∗) = 0 (18)

■ Discretize the macroscopic problem using finite elements:

1 mm1 mm

Macroscopic discretization Microscopic RVE

1 mm1 mm

Macroscopic discretization Microscopic RVE

■ The mesh parameter h of the discretization is much bigger than the
fine-scale geometry length-scale ε:

h >> ε (19)
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Numerical upscaling (cont.)

■ Consider a fixed point iteration for the macroscopic equation:

∇ ·
(

K
(

x, p∗
(n)

,∇p∗
(n)

)

∇p∗
(n+1)

)

= 0 (20)

■ The diffusion tensor K(n) = K
(

x, p∗(n),∇p∗(n)
)

is computed at each

integration point. It is the Darcy permeability corresponding to the geometry
Γ̃

(n)
ε , which, along with ṽ

(n)
ε , ũ

(n)
ε and p̃

(n)
ε satisfies the FSI problem:

Γ̃(n)
ε =

{

p + ũ(n)
ε (p)|∀p ∈ ΓI

0

}

, (21)

−∇y p̃(n)
ε + µ∆yṽ

(n)
ε + b −∇xp∗

(n) = 0 in Ωf , (22)

∇ ·y ṽ(n)
ε = 0 in Ωf , (23)

〈

p̃(n)
ε

〉

= p∗
(n)(x) (24)

∇ ·y

(

S
(

ey

(

ũ(n)
ε

)

, ξ
))

+ b0 = 0 in Ωs
0, (25)
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Numerical upscaling: Example
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Numerical upscaling: Macroscale Solution
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Numerical upscaling: Comparison
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Related Projects: Flow in vuggy reservoirs
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Current and Future Work

■ Provide rigorous justification of the macroscopic model:
◆ Linearize around the current position of the interface and

estimate the error between the the upscaled and exact
FSI solutions.

◆ Compare the accumulated error for the entire nonlinear
iteration process.

■ Include elasticity in the numerical upscaling model
■ Consider geometrically nonlinear solids
■ Check the validity range of nonlinear extensions of

Lee and Mei [1997] to Biot’s equations and compare with
multiscale model

■ Upscaling of flow in vuggy, fractured carbonate reservoirs via
the Stokes-Brinkman equations.
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The End

Questions?
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Distributed computation of local problems

Grid Entry Point

1. Keeps track of available 
workers

2. Client application can check for 
available workers

3. Establishes connection between 
the client and the worker

Grid Entry Point

1. Keeps track of available 
workers

2. Client application can check for 
available workers

3. Establishes connection between 
the client and the worker
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COMPUTATIONAL GRID
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