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Introduction

= There are many processes that involve

multiple scales:

0 Fluid flow in porous media (soil, porous
rocks, etc.)

0 Elasticity problems in composite materials
(adobe, concrete, asphalt, wood, etc.)

0 Modeling of suspensions, mixtures of
several fluids, etc.

s Numerical simulations of fine-scale features
IS often impossible due to scale disparity

= Some type of upscaling method is needed.
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Presentation outline

= Brief overview of upscaling methods in deformable porous
media

= The Fluid-Structure interaction (FSI) problem at the
microscale and numerical methods for its solution

= An asymptotic upscaling result of the FSI problem in channel
geometries and comparisons with computational solutions

= Numerical upscaling of flow in deformable porous media
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Upscaling of flow In rigid porous media

= Assumptions: Rigid, impermeable skeleton, Stokes flow.

= Darcy, 1856 - a phenomenological theory suggesting that
the macroscopic velocities v are proportional to the
pressure gradient Vp:

1
vV = __K*vpa (1)
]
where K* is a permeability tensor, as well as

conservation of mass:

V-v=0<«<= V- (K'Vp) =0. 2)

= Derivation of Darcy’s law by can be done by asymptotic
expansion [Sanchez-Palencia and Ene, 1975].

Ve = 82VO—|—83V1—|—...,
pe = p’+ep +...

where ¢ is the small parameter of the problem.
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Upscaling of deformable porous media

Fluid

Solid

Initial configuration Flow Direction

= Assumptions: elastic skeleton, small displacements of the interface
compared to the pore size.

= The fine scale problem is the weakly coupled Fluid-Structure interaction
problem.

= Biot [1941] - a phenomenological theory of consolidation

= Auriault and Sanchez-Palencia [1977] - Derivation of Biot’s law by asymptotic
expansion in the stationary case

= Sanchez-Palencia [1980], Burridge and Keller [1981] - Derivation in various
time-dependent cases
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Biot's law

= The macroscopic, quasi steady-state equations (ignoring acoustic effects in
the skeleton) have the form:

V- (E* : e(u(o)) — A*p(o)) =0, (3)
ou'? ou'? oplY)
. * (0) _ — A* . *
\% (KVp o f%) A.e( 8t>+ﬁ s (4)

where ¢ Is the pore volume fraction. £*, K*, A* and 3* are macroscopic
coefficients obtained by solving 3 sets of cell problems.

= The macroscopic coefficients are:
0 L* 1s the macroscopic elasticity tensor of the skeleton.
0 K* is the skeleton’s Darcy permeability.
0 A*, g* are fluid-solid coupling coefficients.

= The macroscopic velocity v(?) is given by:

—K*vpl?. (5)
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Nonlinear extensions to Biot’s law

= Various extensions have been proposed with
less restrictive assumptions. For example,
Lee and Mei [1997] assume:
0 Linear Elasticity.
0 Cell displacement can be decomposed into a
rigid body motion + infinitely small
deformation.
0 The rigid body motion is of the same order
as the cell size.
= The macroscopic equations then become nonlinear:

Flow Direction

V- <£* : e(u(O)) — A*p(0)> =C (F* : e(u(o)) — a*p(0)> . Vul® (6)

. ou'v) . ou'?) _opV)

+C <J* e(ul?) + M*p(0)> vp®
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Objectives

We consider an elastic skeleton, without restrictions on the displacements:
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Flow Direction

Applications to filters, microfluidic devices, geomechanics problems.

= Present a numerical method for the solution of the coupled fluid-stricture
problem at the microscale

= Derive an asymptotic solution for flows in simple channel geometries and
verify against the numerics

= Present a hybrid Multiscale FEM model for upscaling general pore

geometries
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Fluid-structure interaction problem

= Find '/, v, p and u such that;
= {p +u(p)|vp € '}, 8)
—uAv + Vp=b in Qf,
V-v=0 inQ/, (9)
—V - (S(e(u),&))=by inQ§,

(S (e (u), &) ny = det (Vu + I) (—pI +2ue (v))) (Vu+ 1) TngonTL. (o)
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Weak form of the coupled system

m Letis introduce the form
gri(v,u,p,w) = / {det(Vu + I)(—pI + 2ue(v)) (Vu + I)—T} wds.
Iy

= The FSI problem (9)-(10) can be restated in a weak form:

Find the interface '/, the deformed configuration of the fluid domain Qf, the displacements
d d
ue [HY Q)] velocity v € [Hj (©2/)]" and pressure p € L3(27) such that

Doy (v,w) = (p, V- W)gr=(b,w)gs, Ywe[H} ()],
—(V - v,q)ar=0, Vg €L (Q7),
agg(u, w)=(by, W)Q(S) + 9ri (v,u,p,w), VYwe [sz (QS)]
I'={p +u(p)|vp € T'o}.

; (11)
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Discretization of the FSI problem

= |et us introduce finite-dimensional subspaces U, U, and U, for the velocity,
pressure and displacements, respectively:

Hv c C°(Q7)|v is quadratic polynomial on V1 € TfHd c [H1<Qf)]d
h J

Uy
Up

{p e CY(Q)|pis linear on V7 € Thf} c HY Q) c L2 (Q)),
Ua = [{u € CO(Q3)|uis linear on Vr € 7,71 < [H' ()] .

= Conformity between the fluid Thf and solid 7,° triangulations is maintained on
the reference configuration of the interface I'.

= The first three equations in lead to the nonlinear system of algebraic
equations

A(u) Cf(u) o0 \% f;
C(u) 0 0 p | = 0 : (12)
0 0 K u fs + g(u, v, p)
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Direct iteration for the FSI problem

= Considering the following iterative approach for solving the FSI problem (11):
0 Solve the Stokes equation in the fluid domain treating the solid as a rigid
body;
0 Transfer the forces to the solid;
0 Calculate the displacement field in the solid and then update the fluid
domain.

= Starting with ug = 0, vop = 0, pg = 0, use a fixed point iteration to solve (11):

A(llk) CT(llk) 0 Vi+1 fl
C(uk) 0 0 Pk+1 = 0 (13)
0 0 K Ur+1 fa + g(uka VE+1, Pk+1)

= The algebraic systems of linear equations for both subproblems are solved
by the Conjugate Gradient Method:
0 The elasticity matrix K is preconditioned by a/MIC' — 0 displacement
decomposition preconditioner [Blaheta, 1994]
0 A pressure Schur complement approach is used for the Stokes
system [Turek, 1999]
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Channel with deformable segment
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Final configuration of the fluid domain 2/ and pressure profile. (Figure not drawn to scale).
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Profile of the horizontal velocity component (Figure not drawn to scale).
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Deformable segment: Flow rate vs. pressure

0.16

—— Q/mean(dp/dx)
0.15+ — Q/(Ap/L) =

0.14 - 8

0.13 .

0.12 - ]

Permeability

0.11 .

0.1 ]

0.09 - .

008 I | I I I |
0 2 4 6 8 10 12 14

Flow rate, Q

Figure 1. Channel permeability as a function of different flow rates.
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Flow In elastic channel

= Consider a long channel with elastic walls

= The fluid and solid domains in the deformed configuration are defined as

Qp ={(z,9):0<z<1, 0<y<y(z)},
Qs ={(r,y): 0<x <1, v(x)<y<1l4+9)},
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Asymptotic expansion of FSI problem

= et the channel thickness 2/ be much smaller than its length L and introduce
the small parameter

£ = (14)

[

L

= Consider an asymptotic expansions with respect to ¢ of the field variables
(velocity, pressure, displacement) of the FSI problem:

V1 = v? + 5?}% + 821}% + ...
Vo = ’0(2) + 5?}% + 521)% + ...

D :po —|—<€p1 —|—<€2p2 + ...
Uy = u(l) + su% + 821@ + ...

0 1 2, 2
U2 = Uy + EUS + E7US T+ ...

The expansion is with respect to the deformed configuration.
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Asymptotic expansion: The fluid domain

Substituting v1, v2 and p in the Stokes system and examining various powers of ¢ gives:
0 0 2 3 a_po _
P =@, 5 (@) o as

= The above equations are independent of the solid type or interface displacements.

= The second equation can be interpreted as a 1D nonlinear Darcy law. Indeed, fix «
and define, the y—average operator (),

v ()
@), =g [ oy (6

One then obtains that
(vi(z)) = S 73(:6)—8]9 :
3l ox’

that is, equation can be interpreted as the conservation of mass for a flow with
flux (v1 (z)), driven by a pressure gradient 9..p°(z). Also,

K := K(°(z),z) = —u% — %vg(w) (17)
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Asymptotic expansion (cont.)

® |n order to evaluate the stresses in the solid, we assume a linear, isotropic material:
S=L:E=)X;:tr(E)I+2uE

= Under some additional assumptions on the solid (6 ~ [ and both u; and u. are of

order §) on can solve the elasticity system and obtain the leading order terms in the
stress tensor:

 Ou) L oul
s=21 "y, 9 | +0()
B ST ey

= On the other hand, T/ = —p°(z)I 4+ O (¢) and using the interface condition one gets:

[

us =0 and ’y(az)zl—l-)\ o

p’(z),

=K' @) = 30’0 =5 (14 55'0@))
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Long elastic channel: A typical solution
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Profile of the horizontal velocity component.
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June 6, 2007

Table 1: Comparisons of asymptotic results with numerical values

Numerical experiments

P s Sz

£ =1 e =35 £ =1 £ =35
0.32 | 241 x 1073 | 8.47x107* | 6.63 x 1073 | 1.82 x 1073
0.16 | 1.19 x 1073 | 4.21 x107* | 3.33 x 1073 | 1.06 x 103
0.08 | 5.96 x 1074 | 2.10 x 107% | 1.65 x 1073 | 5.34 x 1074
0.04 | 298 x107* | 1.05 x 107% | 8.19 x 10~ | 2.68 x 1074
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Numerical upscaling

= Macroscopic model for general 2D/3D geometries (Diffusion only)
V- (K(x,p*,Vp*)Vp*) =0 (18)

= Discretize the macroscopic problem using finite elements:

N\
&K AN
N

Macroscopic discretization Microscopic RVE

< 4‘\ IV
x&:‘grgév

= The mesh parameter h of the discretization is much bigger than the
fine-scale geometry length-scale «:

h >>¢ (19)

June 6, 2007 Large-Scale Scientific Computations’07, Sozopol, Bulgaria - p. 21/29




Numerical upscaling (cont.)

= Consider a fixed point iteration for the macroscopic equation:

V- (K (x, p*(™ vp*<’”>) vp*<"+1>) — 0 (20)

= The diffusion tensor K(® = K (x,p*<”), Vp*(”)> is computed at each
Integration point. It is the Darcy permeability corresponding to the geometry
T, which, along with v\, @\ and p{™ satisfies the FSI problem:

L = {p +al™ (p)|vp € I} } , (21)
V5 + puA VY 4 b -V, pr ™ =0 inQ', (2
V., v =0 in Q. (23)

() = p" " () (24)

V., (s (ey (ﬁgn>>,£>> +by=0 nQs, (25
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Numerical upscaling: Example

Macroscopic FSI problem
consisting of 16x16 unit cells

Unit Cell Geometry
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P=1

Numerical upscaling: Macroscale Solution

Pressure contour plot

Fluid}/

|
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Avaage presure

Numerical upscaling: Comparison
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Related Projects: Flow in vuggy reservoirs
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Current and Future Work

= Provide rigorous justification of the macroscopic model:
0 Linearize around the current position of the interface and
estimate the error between the the upscaled and exact
FSI solutions.
0 Compare the accumulated error for the entire nonlinear
iteration process.

= Include elasticity in the numerical upscaling model
= Consider geometrically nonlinear solids

= Check the validity range of nonlinear extensions of
Lee and Mel [1997] to Biot’s equations and compare with
multiscale model

= Upscaling of flow in vuggy, fractured carbonate reservoirs via
the Stokes-Brinkman equations.
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Questions?




Distributed computation of local problems
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