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Presentation outline

■ Brief overview of upscaling methods in deformable porous
media

■ The Fluid-Structure interaction (FSI) problem at the
microscale and numerical methods for its solution

■ An asymptotic upscaling result of the FSI problem in channel
geometries and comparisons with computational solutions

■ Numerical upscaling of flow in deformable porous media
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Why homogenize

■ Often solving a boundary value problem on the exact geometry is impossible.
Some examples are fluid flow in porous media (e.g. soil), Elasticity equations
in heterogeneous media (concrete, asphalt), etc.

■ Consider a simple example:

∂

∂x

(

a(x/ε)
∂uε(x)

∂x

)

= f(x),

uε(0) = 0 uε(1) = 0.

■ The aim of upscaling methods is to replace the above equation with one with
smooth coefficients

∂

∂x

(

a∗(x)
∂u∗(x)

∂x

)

= f(x),

whose solution u∗(x) is close to uε(x).

Answer: a∗(x) =

�

1
a(x/ε)

�

−1
, where 〈φ〉 = 1

ε

�x+ε
x φ(y)dy
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Upscaling of flow in rigid porous media

■ Assumptions: Rigid skeleton, Stokes flow.
■ Darcy, 1856 - a phenomenological theory

suggesting that velocities are proportional to
the pressure gradient:

v = −
1

µ
K∇p,

∇ · v = 0

■ Derivation of Darcy’s law by can be done by
the asymptotic expansion method
[Sanchez-Palencia and Ene, 1975]:

vε = ε2v0 + ε3v1 + . . . ,

pε = p0 + εp1 + . . .

■ Convergence proof can be found for example
in Sanchez-Palencia [1980]
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Upscaling of deformable porous media

■ Elastic skeleton, small displacements of the
interface compared to the pore size.

◆ Biot [1941] - a phenomenological theory of
consolidation:

◆ Auriault and Sanchez-Palencia [1977] -
Derivation of Biot’s law by the
homogenization method

◆ Sanchez-Palencia [1980] - Derivation of
Biot’s law for time-dependent equations
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■ The macroscopic equations have the form:

∇ ·

�

L∗ : e(u(0)) − A
∗p(0)

�
= 0 (1)

∇ ·

�

K
∗∇p(0) − n

∂u(0)

∂t

�

= γ
∗ : e

�

∂u(0)

∂t

�

+ β∗
∂p(0)

∂t
(2)

v
(0) = n

∂u(0)

∂t
− K

∗∇p(0) (3)
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Cell problems for Biot’s law

■ Standard cell problem for average elastic properties (L∗):

∇ · (L : ∇φ) = − (∇ · L) : I4 in Ωs (4)

(L : ∇φ)n0 = − (L : I4)n0 on ΓI
0 (5)

■ Pressure influence on the elasticity solution (A∗):

∇ · (L : ∇η) = 0 in Ωs (6)

(L : ∇η)n0 = n0 on ΓI
0 (7)

■ Standard Darcy cell problem (K∗):

∆w + ∇q = −I in Ωf (8)

∇ · w = 0 in Ωf (9)

w = 0 on ΓI
0 (10)
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Example: Nickel foam

Fluid-solid coupling term

A∗ =







0.31 0.00 0.00

0.00 0.33 0.00

0.00 0.00 0.31







Darcy permeability

K∗ =







0.0045 0.0000 0.0000

0.0000 0.0025 0.0000

0.0000 0.0000 0.0043






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Nonlinear extensions to Biot’s law

■ Various extensions have been proposed with
less restrictive assumptions. For example,
Lee and Mei [1997] assume:

◆ Linear Elasticity.
◆ Cell displacement can be decomposed into a

rigid body motion + infinitely small
deformation.

◆ The rigid body motion is of the same order
as the cell size.
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■ The macroscopic equations then become nonlinear:

∇ ·
(

L∗ : e(u(0)) − A∗p(0)
)

= C
(

F∗ : e(u(0)) + α∗p(0)
)

: ∇u(0) (11)

∇ ·

(

K∗∇p(0) − n
∂u(0)

∂t

)

= γ∗ : e

(

∂u(0)

∂t

)

+ β∗ ∂p
(0)

∂t
(12)

+ C
(

J∗ : e(u(0)) + M∗p(0)
)

∇p(0)
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Objectives

We consider an elastic skeleton, without restrictions on the displacements
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and we will:
■ Present a numerical method for the solution of the coupled fluid-stricture

problem
■ Derive an asymptotic solution for the flow in a long elastic channel
■ Compare numerical results for a long channel with the asymptotic result
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Reference and deformed configurations

■ We associate the points of a continuum with points p ∈ R
d.

■ The body undergoes a deformation x = x(p):
■ It’s current state can be described either by material coordinates p or spatial

ones x.
■ Solid problems are typically defined on the reference (Lagrangian)

configuration.
■ Fluid problems are usually defined in the deformed (Eulerian) configuration.

p

x)(px

)(xp

Deformed 
configuration

Reference 
configuration
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Stress measures and conservation laws

■ The (Cauchy) stress tensor T(x) is defined on the deformed configuration.
■ the Piola-Kirchhoff stress tensor S(p) is defined in the reference

configuration.
■ The two are connected by

S(p) = det(F(p))T(x(p))F−T (p). (13)

■ The balance of linear momentum reads:

−∇p · S(p) = b0(p)

in the reference, and
−∇x · T(x) = b(x)

in the deformed configuration.
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Elasticity problem

■ Introducing the displacements and small strain tensor:

u(p) = x(p) − p, E(p) = e (u) = 1
2

(

∇u(p) + ∇u(p)T
)

,

■ A general nonlinear solid with internal variables is assumed:

S =
∂W

∂F
(F, ξ) (14)

■ The linearized elasticity problem is: Find u(p) such that

−∇ · (S (E, ξ)) = b0. (15)

with Dirichlet

u = û on ΓD
0 (16)

and/or Neumann

Sn0 = ŝ on ΓN
0 (17)

boundary data with the usual conditions ΓD
0

⋂

ΓN
0 = ∅ and ΓD

0

⋃

ΓN
0 = Γ0.
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Fluid problem

■ Given the symmetric part of the velocity gradient tensor

D(x) = e (v) =
1

2

(

∇v(x) + ∇v(x)T
)

,

■ A Newtonian fluid is one for which:

T = −pI + 2µD.

■ The fluid must satisfies the conservation of mass and momentum:

∇ · v = 0, (18)

ρ(v · ∇)v = −∇p+ µ∆v + b.

■ In the Stokes approximation, the quadratic term is disregarded:

−µ∆v + ∇p = b. (19)
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Fluid-Solid interface

■ The velocity of the fluid on the interface ΓI should be equal to the velocity of
the interface itself:

v = 0 on ΓI . (20)

■ Continuity of normal component of the forces:

Tfn = Tsn on ΓI (21)

where n = ns is the outward normal to the solid domain.

■ The last equation, written on the (unknown) interface ΓI reads:

−pn + 2µDn = det(F)−1SFT n on ΓI (22)

■ Using equation (20), we can rewrite the last equation (22) as

det(∇u + I)(−pI + 2µe(v)) (∇u + I)
−T

n0 = (S (e (u), ξ))n0 on ΓI
0.
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Fluid-structure interaction problem

■ Find ΓI , v, p and u such that:

ΓI =
{

p + u(p)|∀p ∈ ΓI
0

}

, (23)

−µ∆v + ∇p=b in Ωf ,

∇ · v=0 in Ωf ,

−∇ · (S (e (u), ξ))=b0 in Ωs
0,

(24)

(S (e (u), ξ))n0 = det (∇u + I) (−pI + 2µe (v))) (∇u + I)
−T

n0 on ΓI
0. (25)
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Weak form of the coupled system

■ Let is introduce the form

gΓI
0
(v,u, p,w) =

∫

ΓI
0

{

det(∇u + I)(−pI + 2µe(v)) (∇u + I)
−T
}

wds.

■ The FSI problem (24)-(25) can be restated in a weak form:
Find the interface ΓI , the deformed configuration of the fluid domain Ωf , the displacements

u ∈
[

H1(Ωs
0)
]d

, velocity v ∈
[

H1
0

(

Ωf
)]d

and pressure p ∈ L2
0(Ω

f ) such that

DΩf (v,w) − (p,∇ · w)Ωf =(b,w)Ωf , ∀w∈
[

H1
0

(

Ωf
)]d

,

−(∇ · v, q)Ωf =0, ∀q ∈L2(Ωf ),

aΩs
0
(u,w)=(b0,w)Ωs

0
+ gΓI

0
(v,u, p,w), ∀w∈

[

H1
D (Ωs

0)
]d
,

Γ={p + u(p)|∀p ∈ Γ0} .

(26)
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Discretization of the FSI problem

■ Let us introduce finite-dimensional subspaces Uv, Up and Uu for the velocity,
pressure and displacements, respectively:

Uv =
[{

v ∈ C0(Ωf )|v is quadratic polynomial on ∀τ ∈ T f
h

}]d

⊂
[

H1(Ωf )
]d
,

Up =
{

p ∈ C0(Ωf )|p is linear on ∀τ ∈ T f
h

}

⊂ H1(Ωf ) ⊂ L2(Ωf ),

Uu =
[{

u ∈ C0(Ωs
0)|u is linear on ∀τ ∈ T s

h

}]d
⊂
[

H1(Ωs
0)
]d
.

■ Conformity between the fluid T f
h and solid T s

h triangulations is maintained on
the reference configuration of the interface Γ0.

■ The first three equations in (26) lead to the nonlinear system of algebraic
equations







A(u) CT (u) 0

C(u) 0 0

0 0 K













v

p

u






=







f1

0

f2 + g(u,v,p)






, (27)
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Direct iteration for the FSI problem

■ Considering the following iterative approach for solving the FSI problem (26):
◆ Solve the Stokes equation in the fluid domain treating the solid as a rigid

body;
◆ Transfer the forces to the solid;
◆ Calculate the displacement field in the solid and then update the fluid

domain.
■ Starting with u0 = 0, v0 = 0, p0 = 0, use a fixed point iteration to solve (26):







A(uk) CT (uk) 0

C(uk) 0 0

0 0 K













vk+1

pk+1

uk+1






=







f1

0

f2 + g(uk,vk+1,pk+1)






(28)

■ The algebraic systems of linear equations for both subproblems are solved
by the Conjugate Gradient Method:
◆ The elasticity matrix K is preconditioned by a MIC − 0 displacement

decomposition preconditioner [Blaheta, 1994]
◆ A pressure Schur complement approach is used for the Stokes

system [Turek, 1999]
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Remeshing of the fluid domain

(a) Degenerated mesh (b) Regenerated mesh

Figure 1: In this example an elastic obstacle deforms to the left in response to
flow in the channel. The solid lines indicated its initial configuration. If only the
boundary nodes of the fluid mesh are moved, it degenerates (left). The second
mesh (right) is obtained after remeshing the fluid domain.
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Remeshing of the fluid domain (cont.)

(a) Flow external to a elastic skeleton (b) Degenerated mesh after first iteration

Figure 2: Another case when the mesh degenerates after a new position of the
interface is computed.
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Channel with deformable segment

Final configuration of the fluid domain Ωf and pressure profile. (Figure not drawn to scale).

Profile of the horizontal velocity component (Figure not drawn to scale).
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Deformable segment: Flow rate vs. pressure
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Figure 3: Channel permeability as a function of different flow rates.
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Flow in a Channel with an SMA Segment

Flow Direction
Initial position of the
SMA membrane

Final (Deformed)
geometry
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Flow in elastic channel

δ

δ

l

s
0Ω
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s
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s
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■ Let the channel thickness l be much smaller than its length L and introduce
the small parameter

ε =
l

L
(29)
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Asymptotic expansion of FSI problem

■ Consider an asymptotic expansions with respect to ε of the field variables
(velocity, pressure, displacement) of the FSI problem:

v1 = v0
1 + εv1

1 + ε2v2
1 + ...

v2 = v0
2 + εv1

2 + ε2v2
2 + ...

p = p0 + εp1 + ε2p2 + ...

u1 = u0
1 + εu1

1 + ε2u2
1 + ...

u2 = u0
2 + εu1

2 + ε2u2
2 + ...

■ Substituting in the Stokes system (18),(19), we get at the 0th order

p0 = p0(x), 〈v1(x)〉 = −
1

3
γ3(x)

∂p0

∂x

∂

∂x

(

γ3(x)
∂p0

∂x

)

= 0.
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Asymptotic expansion (cont.)

■ For the solid domain, assume that
◆ Isotropic material (S = L : E = λs : tr(E)I + 2µsE)
◆ δ ∼ l
◆ both u1 and u2 are of order δ

■ Then, one can solve the elasticity system at the zero order for ε and obtain

σS,0 =
δ

l

[

λs

λs+2µs
c2(x)

µs

µs
c1(x)

µs

µs
c1(x)

(λs+2µs)
λs+2µs

c2(x)

]

■ Using the interface condition, we get

γ(x) ≈ 1 + δ
1

λs + 2µs
p0(x),

K = K(x, p0(x)) =
1

3
γ3(x) ≈

1

3

(

1 + δ
1

λs + 2µs
p0(x)

)3

.
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Long elastic channel: A typical solution

Final configuration of the fluid domain Ωf and pressure profile.

Profile of the horizontal velocity component.
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Numerical experiments

Table 1: Comparisons of asymptotic results with numerical values

P 0 ||γ̄−γ||
L2

||γ||
L2

||K̄−K||
L2

||K||
L2

ε = 1
10 ε = 1

20 ε = 1
10 ε = 1

20

0.32 2.41 × 10−3 8.47 × 10−4 6.63 × 10−3 1.82 × 10−3

0.16 1.19 × 10−3 4.21 × 10−4 3.33 × 10−3 1.06 × 10−3

0.08 5.96 × 10−4 2.10 × 10−4 1.65 × 10−3 5.34 × 10−4

0.04 2.98 × 10−4 1.05 × 10−4 8.19 × 10−4 2.68 × 10−4
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Long elastic channel: Permeability
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Figure 4: Channel permeability as a function of different flow rates.
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Numerical upscaling

■ Macroscopic model for general 2D/3D geometries

∇ · (K (x, 〈p〉 , e (〈u〉))∇〈p〉) = f (〈p〉 ,∇〈p〉 , e (〈u〉)) (Diffusion) (30)

∇ · S(e (〈u〉), 〈p〉 ,Z,P) = b (〈p〉 ,∇〈p〉 , e (〈u〉)) (Elasticity) (31)

■ Discretize the macroscopic problem using finite elements:

1 mm1 mm

Macroscopic discretization Microscopic RVE

1 mm1 mm

Macroscopic discretization Microscopic RVE
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Numerical upscaling: Example
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Future Work

■ Numerical upscaling: Macroscopic elasticity,
rigorous justification of macroscopic model

■ Determine the upscaling parameters for general
3D geometries (〈p〉, ∇〈p〉, e (〈u〉),...)

■ Validate models against microscale solutions

■ Check the validity range of nonlinear extensions of
Lee and Mei [1997] to Biot’s equations
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The End

Questions?
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Direct iteration for the FSI problem (cont.)

Set u0 = 0. For k = 0, 1, ... until convergence do:

1. Find vk, pk which satisfy the Stokes equations (18),(19) in Ωf
k with the no-slip boundary

condition on the interface ΓI
k and the appropriate boundary conditions on ∂Ωf

k \ ΓI
k.

2. Compute the traction tk = Tnk on the interface ΓI
k using equation (22).

3. Based on tk compute the tractions sk in the reference configuration of the interface, i.e. ΓI
0

using equation (13) and the current iterate for the displacements uk.

4. Find uk+1 which satisfies the balance of linear momentum (15) in Ωs
k with Sn0 = sk and

the appropriate boundary data on ∂Ωs
0\Γ

I
0.

5. Compute ΓI
k+1 =

{

p + uk+1(p)|∀p ∈ ΓI
0

}

and Ωf
k+1:

6. Check convergence: ||uk+1 − uk||ΓI
k+1

< TOLERANCE ∗ ||uk+1||ΓI
k+1

. The norm

is the discrete euclidian norm of the interface nodal values.
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Weak form of the elasticity problem

■ Let us introduce the bilinear form

aΩ0
(u,w) =

∫

Ω0

(L : e(u)) : e(w)dx.

■ The weak form of the linear elasticity problem is:

Given û ∈
[

H1/2(ΓD)
]d

and b0 ∈
[

H−1(Ωs
0)
]d

, Find u ∈
[

H1(Ωs
0)
]d

such that

aΩs
0
(u,w)=(b0,w)Ωs

0
+ (ŝ,w)ΓN

0
, ∀w ∈

[

H1
D (Ωs

0)
]d
,

u=û, on ΓD
0 .

(32)

■ The problem (32) has unique solution iff Korn’s inequality holds, i.e., ∃C > 0
such that

∫

Ω0

e(u) : e(u)dx > C|u|21
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Approximation to the elasticity problem

The Elasticity problem is solved by linear, triangular finite elements.
■ Given a triangulation T s

h of Ωs
0, the approximation space for the

displacements is

Uu =
[{

u ∈ C0(Ωs
0)|u is linear on ∀τ ∈ T s

h

}]d
⊂
[

H1(Ωs
0)
]d
. (33)

■ Denote by φj
i , i = 1...Nv, j = 1...d the nodal basis functions for the

displacement space Uu. The weak form (32) gives rise to the linear system

Ku = b, (34)

K =









K11 · · · K1d

...
. . .

...
Kd1 · · · Kdd









. (35)
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Solution to the elasticity linear system

The stiffness matrix K is symmetric, positive definite and sparse, making it
ideal for the application of the PCG method.
■ Consider the matrix

KSDC = diag(K11, . . . ,Kdd)

■ It can be shown that KSDC is an optimal preconditioner for K [Blaheta,
1994]:

cond((KSDC)−1K) ≤
d− 1

γ

1 − ν

1 − 2ν
, (36)

■ The application of (KSDC)−1 at each CG iteration for (34) can be done by
multigrid in linear time, leading to an optimal method.

■ We use a MIC(0) factorization of KSDC which results in an O(h3/2)
algorithm.
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Weak form of the Stokes problem

■ Let DΩf (v,w) be the vector Dirichlet form

DΩf (v,w) =

∫

Ωf

µ∇v : ∇wdx.

■ Find v ∈
[

H1
0

(

Ωf
)]d

, p ∈ L2
0(Ω

f ) such that

DΩf (v,w) − (p,∇ · w)Ωf =(b,w)Ωf , ∀w∈
[

H1
0

(

Ωf
)]d

,

−(∇ · v, q)Ωf =0, ∀q ∈L2
(

Ωf
)

.
(37)

■ The problem (37) has unique solution iff ∃C > 0 such that

inf
∀p∈L2

0
(Ωf )

sup
∀v∈[H1

0
(Ωf )]

d

(p,∇ · v)
2
Ωf

DΩf (v,v)
> C (38)
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Approximation to the Stokes problem

The Stokes problem is solved using the LBB stable P2P1 (Taylor-Hood) element
pair.
■ Given a triangulation T f

h of Ωf the approximation spaces for the velocity and
pressure are:

Uv=

� 	

v ∈ C0(Ωf )|v is quadratic polynomial on ∀τ ∈ T f
h


 � d
⊂

�

H1(Ωf )


 d

Up=

�

p ∈ C0(Ωf )|p is linear on ∀τ ∈ Th

�

⊂ H1(Ωf ) ⊂ L2(Ωf )

■ By ordering the velocity unknowns first, followed by the pressure, the weak
problem (37) results in a linear systems

(

A CT

C 0

)(

v

p

)

=

(

f

d

)

. (39)

■ From the discrete version of the LBB condition (38) it follows that (39) is
nonsingular.
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Solution to the Stokes linear system

■ Since A is an invertible matrix one can eliminate the first row of (39) and
obtain:

CA−1CT p = CA−1f − d. (40)

■ The Schur complement S = CA−1CT is a symmetric, positive definite
system therefore we can solve (40) using the PCG method

■ the PCG algorithm only requires the computation of the action of S on a
vector, and this can be done, provided that action of A−1 can be computed
efficiently.

■ The velocity block A is a block diagonal matrix, each block corresponding to
a Laplacian stiffness matrix, and these can be inverted efficiently (in O(N)
operations with multigrid, for example).

■ Further, the Schur complement itself can be preconditioned by a mass matrix
Mp on the pressure space Turek [1999]:

Mp
ij = (ψi, ψj).
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Flow in a channel with elastic obstacles
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Numerical examples: A deformable segment
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0nT =s

Figure 5: Geometry for flow through a channel with elastic segment (Figure not
drawn to scale).
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