A third order scheme for Hamilton-Jacobi equations on triangular grids

Bojan Popov
Department of Mathematics
Texas A\&M University
College Station, TX 77843
popov@math.tamu.edu

Peter Popov
Institute for Scientific Computation
Texas A\&M University
College Station, TX 77843
ppopov@tamu.edu

Presentation outline

- Brief overview of numerical methods for Hamilton-Jacobi equations
- A conforming, piecewise quadratic scheme on triangular meshes, with local evolution for Hamilton-Jacobi equations
- Numerical examples
- Conclusions

The Hamilton-Jacobi Equation

- We are interested in computing numerical solutions to the Cauchy problem for the Hamilton-Jacobi equation:

$$
\begin{align*}
u_{t}(\mathbf{x}, t)+H(\mathbf{x}, \nabla u) & =0 & & \text { for } \forall(\mathbf{x}, t) \in \mathbb{R}^{n} \times[0, T] \tag{1}\\
u(0, \mathbf{x}) & =\tilde{u}(\mathbf{x}) & & \text { for } \forall \mathbf{x} \in \mathbb{R}^{n}
\end{align*}
$$

- Applications
- Plasma processes in semiconductor industry
- Image processing
- Optimal Control
- Problems with evolving interfaces: crack growth, multiphase flow, etc.

Theoretical Background

- There exist infinitely many Lipschitz-continuous solutions to (1).
- Uniqueness is obtained by considering viscosity solutions:

$$
\begin{equation*}
u_{t}^{\varepsilon}+H\left(\mathbf{x}, \nabla u^{\varepsilon}\right)=\varepsilon \Delta u^{\varepsilon} \tag{2}
\end{equation*}
$$

The (uniform) limit $u^{\varepsilon} \rightarrow u$ when $\varepsilon \rightarrow 0, \varepsilon>0$, if it exists, is called a viscosity solution of (1).

- Assume that H satisfies the assumptions:

1. $|H(\mathbf{x}, \mathbf{p})-H(\mathbf{y}, \mathbf{p})| \leq C|\mathbf{x}-\mathbf{y}|(1+|\mathbf{p}|)$
2. $|H(\mathbf{x}, \mathbf{p})-H(\mathbf{x}, \mathbf{q})| \leq C|\mathbf{p}-\mathbf{q}|$

Then the Hamilton-Jacobi equation (1) admits a unique viscosity solution.

Semi-discrete methods in 1D

- At time $t=t_{n}$, find an interior to each cell, where the solution will remain smooth for the entire duration $d t$ of the time step.
- Use the smooth interior solution to reconstruct a value for the solution at the mesh nodes.

■ Take the limit $d t \rightarrow 0$ and derive an ODE for the cell nodes. For example (Bryson, et al):

$$
\begin{align*}
\frac{d u_{i}}{d t}\left(t_{n}\right)= & -\frac{a_{i}^{-} H\left(u_{x}^{+}\right)+a_{i}^{+} H\left(u_{x}^{-}\right)}{a_{i}^{+}+a_{i}^{-}} \\
& +a_{i}^{-} a_{i}^{+}\left[\frac{u_{x}^{+}-u_{x}^{-}}{a_{i}^{+}+a_{i}^{-}}-\operatorname{minmod}\left(\frac{u_{x}^{+}-\tilde{u}_{x}}{a_{i}^{+}+a_{i}^{-}}, \frac{\tilde{u}_{x}-u_{x}^{-}}{a_{i}^{+}+a_{i}^{-}}\right)\right] \tag{3}
\end{align*}
$$

- The ODE is defined only for the mesh nodes, but not the midpoints!

Semi-discrete methods in 1D (cont.)

- Given the known piecewise quadratic approximation of the solution at $t=t_{n}$, make one time step of the ODE to obtain values at the mesh nodes, i.e. $u\left(x_{i}, t_{n+1}\right)$.
- Based on the computed $u\left(x_{i}, t_{n+1}\right)$, reconstruct the values at the midpoints $u\left(x_{i+\frac{1}{2}}, t_{n+1}\right)$ by minimizing convexity, i.e., minmod limiter scheme:

Numerical methods in 2D

- ENO (Essentially Non-oscillatory Methods), WENO (Weighted ENO) (e.g. Osher, Sethian, Shu).
■ Semi-discrete methods on structured grids with line reconstructions (e.g. Bryson, Kurganov, Levy, Petrova)

Current Method: Basic Idea

- Use a piecewise quadratic, conforming approximation of $u(:, t)$ on triangles, for any given time t.
- Every time-step consists of the following substeps:
- Local evolution of the the solution in the interior of each triangle
- Reconstruction of the solution on the original grid (vertices and midpoints) from the interior quadratic polynomials

Local Evolution

- For each element e, select an interior triangle, homothetic to e, such that the solution remains smooth for the duration of the time step.
- Let $u_{e}^{i n t}$ be the restriction of $u\left(\cdot, t_{n}\right)$ over this interior triangle.

- Evolve each interior restriction $u_{e}^{\text {int }}$ by a suitable integrator, that is, solve numerically

$$
\begin{equation*}
\frac{d u_{e}^{i n t}}{d t}=-H\left(\mathbf{x}, \nabla u_{e}^{i n t}\right) \tag{4}
\end{equation*}
$$

by a second order method to obtain $u_{e}^{\text {int }}\left(\cdot, t_{n+1}\right)$.

- At the end, one has an piecewise quadratic, discontinuous approximation to the solution at $t=t_{n+1}$

Reconstruction I: node based

- For each triangle e, construct the interior and exterior interpolants $u_{e}^{\text {int }}$ and $u_{e}^{e x t}$, respectively.
- Choose the interpolant which has lower convexity
■ For each node \mathbf{v} (vertex or midpoint), consider all upwind triangles $\left\{e_{\mathbf{v}}^{i}\right\}_{i \in U_{\mathbf{v}}}$ and let u_{v} be the one with lowest convexity.
- The nodal value at v is assigned the value of the upwind interpolant with lowest convexity, that is,

$$
u\left(\mathbf{v}, t_{n+1}\right)=u_{\mathbf{v}}(\mathbf{v})
$$

When the above procedure is repeated for all vertices and midpoints, one has a continuous, piecewise quadratic approximation of u at time step $t=t_{n+1}$

Reconstruction II: triangle convexity

- For each triangle e, consider the values of the interior interpolant $u_{e}^{\text {int }}$ as data.
- Use the values inside e and its neighbors to generate quadratic functions which interpolate six of the data points.
- Choose the approximant inside e which has lowest convexity from the admissible set of quadratic functions
- For each node v (vertex or midpoint), the value assigned is the average of all
 approximants
When the above procedure is repeated for all nodes, one has a unique continuous, piecewise quadratic interpolant of the data which is our approximation of u at time step $t=t_{n+1}$

Numerical Examples: Linear Transport

Linear transport $\left(H\left(u_{x}, u_{y}\right)=u_{x}+u_{y}\right), h=0.08, d t=0.01$

Numerical Examples: Linear Transport

Linear transport $\left(H\left(u_{x}, u_{y}\right)=u_{x}+u_{y}\right), h=0.2, d t=0.01$

Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian $\left(H\left(u_{x}, u_{y}\right)=u_{x}^{2}+u_{y}^{2}\right), h \approx 0.2, d t=0.0025$, Smooth initial data.

Table 1: Relative L_{1} error

T	$h, d t$		$h / 2, d t / 2$	
	Rec I	Rec II	Rec I	Rec II
0.1	0.026	0.021	0.0064	0.004
0.15	0.034	0.024	0.0078	0.0046
0.2	0.040	0.028	0.0099	0.0058
0.3	0.054	0.038	0.014	0.0079
0.4	0.071	0.048	0.019	0.011

Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian $\left(H\left(u_{x}, u_{y}\right)=u_{x}^{2}+u_{y}^{2}\right), h \approx 0.2, d t=0.0025$, Non-smooth initial data, Reconstruction I.

Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian $\left(H\left(u_{x}, u_{y}\right)=u_{x}^{2}+u_{y}^{2}\right), h \approx 0.2, d t=0.0025$, Non-smooth initial data, Reconstruction II.

Numerical Examples: 2D Burgers

Nonlinear and convex Hamiltonian $\left(H\left(u_{x}, u_{y}\right)=\frac{1}{2}\left(u_{x}+u_{y}+1\right)^{2}\right), 30 \times 30$ grid, $\Omega=[-2,2]^{2}, d t=0.0025$, Reconstruction II.

Initial condition: $u(\mathbf{x})=-\frac{1}{2} \cos (\pi(x+y))$

Solution at $t=1.5 / \pi$.

Conclusions

- The proposed fully discrete method solves successfully linear and convex Hamilton-Jacobi equations on unstructured triangular grids
- The method is exact for quadratic polynomials.
- Numerical experiments suggest that the reconstruction used is successful at limiting the convexity of the solution.
- A further analysis of the algorithm is needed to understand:
- Stability of solution with respect to mesh parameters
- Behavior of algorithm for non-convex Hamiltonians

