A third order scheme for Hamilton-Jacobi equations on triangular grids

Bojan Popov

Department of Mathematics Texas A&M University College Station, TX 77843 popov@math.tamu.edu

Peter Popov

Institute for Scientific Computation Texas A&M University College Station, TX 77843 ppopov@tamu.edu

Presentation outline

- Brief overview of numerical methods for Hamilton-Jacobi equations
- A conforming, piecewise quadratic scheme on triangular meshes, with local evolution for Hamilton-Jacobi equations
- Numerical examples
- Conclusions

The Hamilton-Jacobi Equation

We are interested in computing numerical solutions to the Cauchy problem for the Hamilton-Jacobi equation:

 $u_t(\mathbf{x}, t) + H(\mathbf{x}, \nabla u) = 0 \qquad \text{for } \forall (\mathbf{x}, t) \in \mathbb{R}^n \times [0, T] \quad \text{(1)}$ $u(0, \mathbf{x}) = \tilde{u}(\mathbf{x}) \qquad \text{for } \forall \mathbf{x} \in \mathbb{R}^n$

Applications

- Plasma processes in semiconductor industry
- Image processing
- Optimal Control
- Problems with evolving interfaces: crack growth, multiphase flow, etc.

Theoretical Background

- There exist infinitely many Lipschitz-continuous solutions to (1).
- Uniqueness is obtained by considering viscosity solutions:

$$u_t^{\varepsilon} + H(\mathbf{x}, \nabla u^{\varepsilon}) = \varepsilon \Delta u^{\varepsilon}$$
 (2)

The (uniform) limit $u^{\varepsilon} \to u$ when $\varepsilon \to 0$, $\varepsilon > 0$, if it exists, is called a viscosity solution of (1).

- Assume that *H* satisfies the assumptions:
 - 1. $|H(\mathbf{x}, \mathbf{p}) H(\mathbf{y}, \mathbf{p})| \le C |\mathbf{x} \mathbf{y}| (1 + |\mathbf{p}|)$
 - 2. $|H(\mathbf{x}, \mathbf{p}) H(\mathbf{x}, \mathbf{q})| \le C |\mathbf{p} \mathbf{q}|$

Then the Hamilton-Jacobi equation (1) admits a unique viscosity solution.

Semi-discrete methods in 1D

- At time t = t_n, find an interior to each cell, where the solution will remain smooth for the entire duration dt of the time step.
- Use the smooth interior solution to reconstruct a value for the solution at the mesh nodes.

Take the limit $dt \rightarrow 0$ and derive an ODE for the cell nodes. For example (Bryson, et al):

$$\frac{du_i}{dt}(t_n) = -\frac{a_i^- H(u_x^+) + a_i^+ H(u_x^-)}{a_i^+ + a_i^-} + a_i^- a_i^+ \left[\frac{u_x^+ - u_x^-}{a_i^+ + a_i^-} - \operatorname{minmod}\left(\frac{u_x^+ - \tilde{u}_x}{a_i^+ + a_i^-}, \frac{\tilde{u}_x - u_x^-}{a_i^+ + a_i^-}\right)\right]$$
(3)

The ODE is defined only for the mesh nodes, but not the midpoints!

Semi-discrete methods in 1D (cont.)

- Given the known piecewise quadratic approximation of the solution at $t = t_n$, make one time step of the ODE to obtain values at the mesh nodes, i.e. $u(x_i, t_{n+1})$.
- Based on the computed $u(x_i, t_{n+1})$, reconstruct the values at the midpoints $u(x_{i+\frac{1}{2}}, t_{n+1})$ by minimizing convexity, i.e., minmod limiter scheme:

Numerical methods in 2D

- ENO (Essentially Non-oscillatory Methods), WENO (Weighted ENO) (e.g. Osher, Sethian, Shu).
- Semi-discrete methods on structured grids with line reconstructions (e.g. Bryson, Kurganov, Levy, Petrova)

Current Method: Basic Idea

- Use a piecewise quadratic, conforming approximation of u(:, t) on triangles, for any given time t.
- Every time-step consists of the following substeps:
 - Local evolution of the the solution in the interior of each triangle
 - Reconstruction of the solution on the original grid (vertices and midpoints) from the interior quadratic polynomials

Local Evolution

- For each element e, select an interior triangle, homothetic to e, such that the solution remains smooth for the duration of the time step.
- Let u_e^{int} be the restriction of $u(\cdot, t_n)$ over this interior triangle.

Evolve each interior restriction u_e^{int} by a suitable integrator, that is, solve numerically

$$\frac{du_e^{int}}{dt} = -H(\mathbf{x}, \nabla u_e^{int}) \tag{4}$$

by a second order method to obtain $u_e^{int}(\cdot, t_{n+1})$.

At the end, one has an piecewise quadratic, discontinuous approximation to the solution at $t = t_{n+1}$

Reconstruction I: node based

- For each triangle e, construct the interior and exterior interpolants u^{int}_e and u^{ext}_e, respectively.
- Choose the interpolant which has lower convexity
- For each node v (vertex or midpoint), consider all upwind triangles $\{e_{\mathbf{v}}^i\}_{i \in U_{\mathbf{v}}}$ and let $u_{\mathbf{v}}$ be the one with lowest convexity.
- The nodal value at v is assigned the value of the upwind interpolant with lowest convexity, that is,

$$u(\mathbf{v}, t_{n+1}) = u_{\mathbf{v}}(\mathbf{v}).$$

When the above procedure is repeated for all vertices and midpoints, one has a continuous, piecewise quadratic approximation of u at time step $t = t_{n+1}$

Reconstruction II: triangle convexity

- For each triangle e, consider the values of the interior interpolant u_e^{int} as data.
- Use the values inside e and its neighbors to generate quadratic functions which interpolate six of the data points.
- Choose the approximant inside e which has lowest convexity from the admissible set of quadratic functions
- For each node v (vertex or midpoint), the value assigned is the average of all approximants

When the above procedure is repeated for all nodes, one has a unique continuous, piecewise quadratic interpolant of the data which is our approximation of u at time step $t = t_{n+1}$

Numerical Examples: Linear Transport

Numerical Examples: Linear Transport

Linear transport ($H(u_x, u_y) = u_x + u_y$), h = 0.2, dt = 0.01

Numerical Examples: Quadratic Hamiltonian

Nonlinear and convex Hamiltonian ($H(u_x, u_y) = u_x^2 + u_y^2$), $h \approx 0.2$, dt = 0.0025, Smooth initial data.

Table 1: Relative L_1 error

Т	h, dt		h/2, $dt/2$	
	Rec I	Rec II	Rec I	Rec II
0.1	0.026	0.021	0.0064	0.004
0.15	0.034	0.024	0.0078	0.0046
0.2	0.040	0.028	0.0099	0.0058
0.3	0.054	0.038	0.014	0.0079
0.4	0.071	0.048	0.019	0.011

Nonlinear and convex Hamiltonian ($H(u_x, u_y) = u_x^2 + u_y^2$), $h \approx 0.2$, dt = 0.0025, Non-smooth initial data, Reconstruction I.

Nonlinear and convex Hamiltonian ($H(u_x, u_y) = u_x^2 + u_y^2$), $h \approx 0.2$, dt = 0.0025, Non-smooth initial data, Reconstruction II.

Numerical Examples: 2D Burgers

Nonlinear and convex Hamiltonian ($H(u_x, u_y) = \frac{1}{2}(u_x + u_y + 1)^2$), 30×30 grid, $\Omega = [-2, 2]^2$, dt = 0.0025, Reconstruction II.

Initial condition: $u(\mathbf{x}) = -\frac{1}{2}\cos(\pi(x+y))$

Solution at $t = 1.5/\pi$.

Conclusions

- The proposed fully discrete method solves successfully linear and convex Hamilton-Jacobi equations on unstructured triangular grids
- The method is exact for quadratic polynomials.
- Numerical experiments suggest that the reconstruction used is successful at limiting the convexity of the solution.
- A further analysis of the algorithm is needed to understand:
 - Stability of solution with respect to mesh parameters
 - Behavior of algorithm for non-convex Hamiltonians