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Abstract. The study is motivated by the increased usage of fractional
Laplacian in the modeling of nonlocal problems like anomalous diffu-
sion. We present a parallel numerical solution method for the nonlocal
elliptic problem: −∆αu = f , 0 < α < 1, −∂u(x)/∂n = g(x) on ∂Ω,
Ω ⊂ IRd. The Finite Element Method (FEM) is used for discretization
leading to the linear system Aαu = f , where A is a sparse symmetric and
positive semidefinite matrix. The implemented method is based on the
Best Uniform Rational Approximation (BURA) of degree k, rα,k, of the
scalar function tα, 0 ≤ t ≤ 1. The related approximation of A−αf can be
written as a linear combination of the solutions of k local problems. The
latter are found using the preconditioned conjugate gradient method.
The method is applicable to computational domains with general ge-
ometry. Linear finite elements on unstructured tetrahedral meshes with
local refinements are used in the presented numerical tests. The behavior
of the relative error, the number of Preconditioned Conjugate Gradient
(PCG) iterations, and the parallel time is analyzed varying the param-
eter α ∈ {0.25, 0.50, 0.75}, the BURA degree k ∈ {5, 6, . . . , 12}, and the
mesh size.
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1 Introduction

The recent advancement in fractional calculus and the progress towards extreme
scale computing create possibilities for computer simulation and investigation
of more complicated real life nonlocal phenomena. Fractional Laplacian is used
to model anomalous diffusion, which appears in applications like turbulent fluid
motion, material transport in fractured media, underground flow. These are just
some examples of nonlocal problems, where the fractional diffusive flux at a
certain location is affected by the state of the field in the entire space. An intro-
duction to the fractional Laplacian with some emphasis on fundamental ideas
and model numerical computations is given in [1]. During last years, several nu-
merical methods for fractional diffusion problems assuming general domain were
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proposed (e.g.[2–4]), following the common idea of transforming the problem to
some auxiliary local differential equation in a computational domain of a higher
dimension. The alternative approach proposed in [5] (see also [6]) is devoted
to solution of linear systems with fractional powers of sparse SPD matrices.
The developed methods are based on the best uniform rational approximations
(BURA). A unified view of some numerical methods for fractional diffusion is
recently published in [7], showing that the methods from [2–4] are equivalent to
certain rational approximations. This means that when applicable, the BURA
methods are expected to be the best. The analysis of some first parallel imple-
mentations of the methods from [2, 4, 5] (see [5, 8] and the references there in)
also confirms the advantages of BURA methods. The discussed methods consider
the case of fractional diffusion problems with homogeneous Dirichlet boundary
conditions, where the numerical tests are mostly in domains like Ω = (0, 1)d.

Our goal is to generalize the improved BURA method from [6] to the case
of pure Neumann boundary conditions. The matrix A in the related linear sys-
tem Aαu = f is sparse symmetric and positive semidefinite. The domain has a
nontrivial geometry. Linear finite elements on unstructured tetrahedral meshes
with local refinement are used in the presented numerical tests. The remainder
of the paper is organized as follows. The fractional diffusion problem in terms
of spectral decomposition is introduced in the next section. The main idea of
the BURA method is presented briefly in Section 3. The numerical tests are
presented and analyzed in Section 4. Some concluding remarks and notes on the
further steps are given at the end.

2 Fractional diffusion problem

The definition of a fractional diffusion problem based on the spectral decompo-
sition is used in this work. Let us consider the elliptic boundary value problem

−∆u(x) = f(x), x ∈ Ω,

−
∂u(x)

∂n
= g(x), x ∈ ∂Ω

(1)

in Ω ⊂ IRd with n denoting the outward normal unit vector for ∂Ω. The weak
formulation (see [9]) of (1) is: given f ∈ L2(Ω) and g ∈ L2(∂Ω) find u ∈ H1(Ω)
such that
∫

Ω

∇u(x) · ∇v(x)dx =

∫

Ω

f(x)v(x)dx+

∫

∂Ω

g(γ)v(γ)dγ, ∀v ∈ H1(Ω),

where dγ denotes the surface measure of ∂Ω. This weak formulation is used
to define the fractional power operator ∆α, 0 < α < 1, through its spectral
decomposition

∆αu = f, ∆αu(x) =

∞∑

i=1

λαi ciψi(x), where u(x) =

∞∑

i=1

ciψi(x), (2)
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{ψi(x)}
∞

i=1 are the L2-orthonormal eigenfunctions of ∆, the eigenvalue λ1 = 0
corresponds to the constant eigenfunction ψ1(x), and the rest eigenvalues {λi}

∞

i=2

are real and positive. Similar definition of the fractional power of the related
symmetric and positive semidefinite matrix is assumed.

3 Parallel BURA Based Solution Method

We generalize the method from [6] to solve in parallel the pure Neumann frac-
tional diffusion problem (2). The essential steps are briefly presented below.

3.1 Best uniform rational approximation

The element of best uniform rational approximation (BURA) of tα, 0 < α < 1
is a rational function rα,k of polynomials of degree k that minimizes the error

‖rα,k − tα‖C[0,1].

The modified Remez algorithm is used to compute the parameters of rα,k (see
e.g. [5]). Now, the rational function r̃α,k(ξ) = rα,k(1/t), ξ ∈ [1,+∞) is introduced
and the coefficients ci > 0 and di < 0 of the partial fraction representation

r̃α,k(ξ) = c0 +
k∑

i=1

ci
ξ − di

are computed.

3.2 Discrete problem

The initial (local) problem (1) is discretized by linear finite elements on an
unstructured (tetrahedral in the 3D case) mesh. The resulting system of linear
algebraic equations (with imposed boundary conditions) can be written as

Au = f ,

A = M−1S, where S and M are the stiffness and the lumped mass matrices
respectively. Following the approach in [6], the solution of the nonlocal problem
(2) is approximated by

u = A−αf ≈ λ−α
2

(
c0f +

k∑

i=1

((λ2ci)(A− λ2diI)
−1)f

)
(3)

where λ2 is the smallest positive eigenvalue of A. A is symmetric with respect
to the dot product generated by the diagonal (lumped) mass matrix M . It is
important to note that A is positive definite in the subspace orthogonal to the
constant vectors. The expression (3) means, that in order to find the BURA
approximation of u, one has to compute a linear combination of the solutions
of k local problems with matrices Ai = A − λ2diI scaled by (λ2ci). A parallel
PCG solver is applied to these auxiliary sparse symmetric and positive definite
systems.



4 G. Bencheva et al.

3.3 Solution steps

The tetrahedral mesh of the Ω is distributed among processors using ParMETIS
[10]. The coefficients ci, di of the BURA approximation with polynomials of de-
gree k are computed in advance and read by the program. Each of the k linear
systems of algebraic equations are solved using the Preconditioned Conjugate
Gradient (PCG) method (see e.g. [11] for details) with a parallel multigrid im-
plementation BoomerAMG from the library HYPRE [12] as the preconditioner.
The same preconditioner, constructed from the linear system with the smallest
root d1, is used for the solution of all systems. The approximation of the solution
is calculated using (3). More details on the computational setting and the results
of the performed numerical tests are presented in the next section.

4 Numerical experiments

We are solving the linear system Aαu = f , where 0 < α < 1, and A and f

correspond to FEM discretization of the following 3D Laplace problem with
pure Neumann boundary conditions:

−∆u = 0 in Ω,

−
∂u

∂n
= 0 on ΓR,

−
∂u

∂n
= gI on ΓI ,

−
∂u

∂n
= gO on ΓO.

The computational domain consists of two cylinders (see Fig. 1), where ∂Ω =
ΓI ∪ ΓO ∪ ΓR, ΓI and ΓO are the left and right bases of the larger and smaller
cylinders respectively. The functions gI and gO satisfy the equation

∫

ΓI

gIdγ +

∫

ΓO

gOdγ = 0. (4)

More precisely, ΓI and ΓO are circles, gO is a parabolic function vanishing at
∂ΓO, with a value of gO equal to 1 at the center of ΓO, and gI is a constant
determined by (4). Using Netgen [13], the computational domain is discretized by
tetrahedral elements, applying local refinement near the boundaries with nonzero
boundary conditions. The resulting mesh is illustrated in Fig. 1. It consists of
109 385 nodes and 572 794 tetrahedral elements. This initial mesh M1 is further
uniformly refined three times to get the meshes Mi for i ∈ {2, 3, 4}. Let us
denote by Ni the number of nodes (number of unknowns of the FEM system)
corresponding to Mi. Then, Ni+1 ≈ 8Ni, and N4 ≈ 5× 107.

The presented numerical experiments are split in three parts. The first of
them is devoted to the convergence rate of the FEM discretization with respect
to the mesh size. After that, accuracy of BURA approximation on the finest
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Fig. 1. Computational domain with locally refined unstructured mesh

mesh is investigated, varying the degree k. The last experiments illustrate the
overall performance of the developed solver.

Further, the solution on mesh Mi with order of BURA k is denoted with uk
i .

Since the exact solution of the test problem is unknown, to investigate the rate
of convergence, we solve the problem on all available meshes and consider the
solution, obtained on the finest mesh as a reference solution. The relative error

‖û12
i − û12

4 ‖M
‖û12

4 ‖M

is used for that purpose, where ûk
i is the restriction of the numerical solution

uk
i to the nodes of the mesh M1. For this set of experiments, PCG tolerance

of ε = 10−12 is used to make sure the PCG solver accuracy does not interfere
with the analyzed results. For a similar purpose, the largest considered value of
k = 12 is used for the BURA approximation.

Here and in what follows ‖u‖M stands for the energy norm (uTMu)
1

2 as-
sociated with the matrix M . Since M is the lumped mass matrix, uTMu is a
quadrature formula for the integral

∫
Ω
u2(x)dx. Therefore ‖·‖M is approximately

equal to the L2 norm in the related FEM space.
The obtained results are presented in Fig. 2 (a). The general conclusion is that

the convergence rate decreases for smaller values of α indicating some behaviour
of the presented relative errors like O(h2α).

Next, we turn our attention to the BURA approximation and the influence of
its degree k to the accuracy of the solution. Here, we consider only the solutions
obtained on the finest mesh M4. Again, the PCG tolerance is set to ε = 10−12.
In this case, we consider the solution with k = 12 as a reference one, and compare
the other solutions using a similar relative error in the form

‖uk
4 − u12

4 ‖M
‖u12

4 ‖M
.

The related results are plotted on Fig. 2 (b). According to the the general theory
(see [6]) the BURA methods have an exponential convergence rate with respect
to k, which is confirmed by the presented results.
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Fig. 2. Relative errors:
‖û12

i
−û

12

4
‖M

‖û12

4
‖M

(a) and
‖uk

4
−u

12

4
‖M

‖u12

4
‖M

(b)
.

Here, it is worth to remember that the introduced relative errors use reference
solutions instead of the exact one. In general, the conducted 3 consecutive mesh
refinements could not be enough for reliable quantitative conclusions. In this
sense, the analysis of the presented results is most likely qualitative.

Lastly, we investigate the performance of the developed solver for k = 12.
Based on the previous numerical tests and the observed behavior of the relative
errors, we set ε = 10−6 for the PCG tolerance. In this case, the approximate
solution of the considered fractional diffusion problem involves solving 12 lin-
ear systems with the matrices Ai = (A − λ2diI)/(λ2ci), i = 1, . . . , 12. One
can observe that they are quite similar to matrices arising from normal time-
dependent diffusion problems. This allows us to use any efficient preconditioner
for such problems. In our case, we have chosen BoomerAMG – a parallel alge-
braic multigrid implementation from LLNL’s HYPRE library [12]. The matrices
Ai are differently conditioned. The first one always has the highest condition
number, and in the presented numerical results, the AMG preconditioner for A1

is used for all systems. As expected, different number of iterations are needed
to converge to the set tolerance for the systems with different matrices Ai. The
PCG iterations for each of the systems in the BURA approximation (3), the
total number of iterations N it

tot, the solution time Tsol and the total time Ttot
are presented in Table 1, for all mesh refinements Mi, i = 1, 2, 3, 4 varying also
α ∈ {0.25, 0.50, 0.75}.

The computations are performed on the Avitohol supercomputer [14] located
at IICT-BAS. It consists of 16 core nodes with Intel XeonE5-2650 v2 CPU,
running at 2.60GHz, interconnected with InfiniBand FDR network. All runs
were performed on 64 cores using 4 nodes.

The reported total times include the solution time as well as the time for
discretization of the problem.

The finer meshes require more PCG iterations for all α. This is due to the
aggressive coarsening used in the BoomerAMG setting in order to get a better
parallel efficiency. For all meshes Mi, the iteration counts and the solution times
decrease with the decrease of α. Let us denote by T i

tot the time corresponding to
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Table 1. PCG iterations and parallel times for solution of the fractional Laplacian
problem with k = 12, ε = 10−6, including the auxiliary linear systems with matrices
Ai = (A− λ2diI)/(λ2ci).

α 0.25 0.50 0.75
Mesh M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

A1 11 14 17 19 13 16 19 20 15 18 20 21
A2 7 9 12 15 8 12 14 17 10 13 16 18
A3 5 7 9 11 6 8 11 14 7 10 13 16
A4 3 4 6 8 5 6 8 11 6 8 10 13
A5 2 3 4 5 3 4 6 8 4 6 8 11
A6 3 3 2 3 2 3 4 6 3 4 6 8
A7 3 3 3 2 3 2 3 4 2 3 4 6
A8 2 2 2 2 2 3 3 2 3 2 3 4
A9 2 2 2 2 3 2 2 2 3 3 2 3
A10 2 2 2 2 2 2 2 2 2 3 3 2
A11 2 2 2 2 2 2 2 2 2 2 2 2
A12 2 2 2 2 2 2 2 2 2 2 2 2

N it
tot 44 53 63 73 51 62 76 90 59 74 89 106

Tsol[s] 0.20 0.69 4.8 45 0.24 0.86 5.9 55 0.29 1.01 7.0 65
Ttot[s] 0.26 1.07 7.7 67 0.30 1.24 8.8 77 0.35 1.39 9.8 86

the mesh Mi. Let us consider the efficiency ratio Ei = 8T i−1
tot /T

i
tot to illustrate

the total time scalability. Then E4 ≈ 91% for all α.

5 Concluding remarks

The recently introduced improved BURA method [6] is generalized to the case of
fractional diffusion problems with pure Neumann boundary conditions. The con-
sidered test problem concerns FEM discretization on unstructured tetrahedral
meshes in realistic computational domain with general geometry. The presented
large-scale (up to O(107) degrees of freedom) numerical results provide some
promising proofs of concept of the proposed approach. The following open ques-
tions are derived.

The theoretical error estimates of the FEM numerical solutions of fractional
diffusion problems with pure Neumann boundary conditions are beyond the
scope of this study. However, they are strongly required for future development
of the discussed solution methods. Then, a more accurate reference solution will
be needed to get some reliable quantitative results analyzing the experimen-
tal data. The accuracy (when applicable) of the gradient of BURA computed
approximation is the next important question, taking into account the lower
regularity of the solution for smaller values of α.

In many of the currently available papers, when comparing some methods
for numerical solution of fractional diffusion problems, the number of auxiliary
local systems needed to get a certain accuracy is accepted as a measure of the
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related computational complexity. However, the results presented in Table 1
show rather different numbers of iterations to solve the systems with different
matrices Ai. The conclusion is that some more involved study at this point is
required, including the reasonable stopping criteria for the PCG iterations.

Acknowledgments

We acknowledge the provided access to the e-infrastructure and support of the
Centre for Advanced Computing and Data Processing, with the financial sup-
port by the Grant No BG05M2OP001-1.001-0003, financed by the Science and
Education for Smart Growth Operational Program (2014-2020) and co-financed
by the European Union through the European structural and Investment funds.

The presented work is partially supported by the Bulgarian National Science
Fund under grant No. DFNI-DN12/1.

References

1. Pozrikidis, C.: The Fractional Laplacian, CRC Press, Taylor&Francis Group (2016)
2. Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic

operators. Mathematics of Computation, 84(295), 2083–2110 (2015)
3. Chen, L., Nochetto, R., Enrique, O., Salgado, A.J.: Multilevel methods for nonuni-

formly elliptic operators and fractional diffusion. Mathematics of Computation, 85,
2583–2607 (2016)

4. Vabishchevich, P.N.: Numerically Solving an Equation for Fractional Powers of El-
liptic Operators. Journal of Computational Physics. 282, 289–302 (2015)

5. Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Vutov, Y.: Optimal solvers
for linear systems with fractional powers of sparse SPD matrices. Numer Linear
Algebra Appl. 25(5), e2167. https://doi.org/10.1002/nla.2167 (2018)

6. Harizanov, S., Lazarov, R., Marinov, P., Margenov, S., Pasciak, J.: Anal-
ysis of numerical methods for spectral fractional elliptic equations based
on the best uniform rational approximation. arXiv preprint arXiv:1905.08155
(https://arxiv.org/abs/1905.08155) (2019)

7. Hofreither, C.: A unified view of some numerical methods for
fractional diffusion. Computers & Mathematics with Applications.
https://doi.org/10.1016/j.camwa.2019.07.025 (2019)
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