
Improving the efficiency of parallel alternating directions algorithm for time
dependent problems
Maria Ganzha, Nikola Kosturski, and Ivan Lirkov

Citation: AIP Conf. Proc. 1487, 322 (2012); doi: 10.1063/1.4758974
View online: http://dx.doi.org/10.1063/1.4758974
View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1487&Issue=1
Published by the American Institute of Physics.

Additional information on AIP Conf. Proc.
Journal Homepage: http://proceedings.aip.org/
Journal Information: http://proceedings.aip.org/about/about_the_proceedings
Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS
Information for Authors: http://proceedings.aip.org/authors/information_for_authors

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

http://proceedings.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Maria Ganzha&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Nikola Kosturski&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Ivan Lirkov&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://proceedings.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4758974?ver=pdfcov
http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1487&Issue=1&ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://proceedings.aip.org/?ver=pdfcov
http://proceedings.aip.org/about/about_the_proceedings?ver=pdfcov
http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS&ver=pdfcov
http://proceedings.aip.org/authors/information_for_authors?ver=pdfcov

Improving the efficiency of parallel alternating directions
algorithm for time dependent problems
Maria Ganzha∗, Nikola Kosturski† and Ivan Lirkov†

∗Systems Research Institute, Polish Academy of Science, ul. Newelska 6, 01-447 Warsaw, Poland
†Institute of Information and Communication Technologies, Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria

Abstract. We consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written
in terms of velocity and pressure. A parallel algorithm based on a direction splitting approach is implemented. Our work is
motivated by the need to improve the parallel efficiency of our supercomputer implementation of the parallel algorithm.
We are targeting the IBM Blue Gene/P massively parallel computer, which features a 3D torus interconnect. We study

the impact of the domain partitioning on the performance of the considered parallel algorithm for solving the time dependent
Stokes equation. Here, different parallel partitioning strategies are given special attention. The implementation is tested on
the IBM Blue Gene/P and the presented results from numerical tests confirm that decreasing the communication time better
parallel properties of the algorithm are obtained.
Keywords: Navier-Stokes, time splitting, ADI, incompressible flows, pressure Poisson equation, parallel algorithm
PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 07.05.Tp, 47.10.ad, 47.11.Bc

INTRODUCTION

The objective of this article is to analyze the performance of the MPI and OpenMP parallel codes which use a new
fractional time stepping technique, based on a direction splitting strategy, developed to solve the incompressible
Navier-Stokes equations.
Projection schemes were first introduced in [1, 2] and they have been used in Computational Fluid Dynamics (CFD)

for the last forty years. During these years, these techniques have been evolving, but the main paradigm, consisting
of decomposing vector fields into a divergence-free part and a gradient, has been preserved (see [3] for a review
of projection methods). In terms of computational efficiency, projection algorithms are far superior to the methods
that solve the coupled velocity-pressure system. This feature makes them the most popular techniques in the CFD
community for solving the unsteady Navier-Stokes equations. The computational complexity of each time step of the
projection methods is that of solving one vector-valued advection-diffusion equation, plus one scalar-valued Poisson
equation with the Neumann boundary conditions. Note that, for large scale problems, and large Reynolds numbers,
the cost of solving the Poisson equation becomes dominant.
The alternating directions algorithm proposed in [4] reduces the computational complexity of the action of the

incompressibility constraint. The key idea is to modify the standard projection approach, in which the vector fields
are decomposed into a divergence-free part plus a gradient part. In the new method the pressure equation is derived
from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative
norm induced by the direction splitting. The standard Poisson problem for the pressure correction is replaced by series
of one-dimensional second-order boundary value problems. This technique is proved to be stable and convergent [for
details see 4]. Furthermore, the parallel performance of this technique is analyzed in [5, 6]. The aim of this paper is
to study the impact of the domain partitioning on the performance of the algorithm for solving the 3D time dependent
Stokes equation.

STOKES EQUATION

Let us start by defining the problem to be solved. We consider the time-dependent Navier-Stokes equations on a finite
time interval [0,T], and in a rectangular domain Ω. Since the nonlinear term in the Navier-Stokes equations does not
interfere with the incompressibility constraint, we focus our attention on the time-dependent Stokes equations, written

Application of Mathematics in Technical and Natural Sciences
AIP Conf. Proc. 1487, 322-328 (2012); doi: 10.1063/1.4758974

© 2012 American Institute of Physics 978-0-7354-1099-2/$30.00

322

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

in terms of velocity u and pressure p:
⎧⎪⎨
⎪⎩
ut −νΔu+ ∇p= f in Ω× (0,T)
∇ ·u= 0 in Ω× (0,T)
u|∂Ω = 0, ∂np|∂Ω = 0 in (0,T)
u|t=0 = u0, p|t=0 = p0 in Ω

, (1)

where f is a smooth source term, ν is the kinematic viscosity, and u0 is a solenoidal initial velocity field with a zero
normal trace. In our work, we consider homogeneous Dirichlet boundary conditions on the velocity.
To solve thus described problem, we discretize the time interval [0,T] using a uniform mesh. Finally, let τ be the

time step used in the algorithm.

FORMULATION OF THE SCHEME

Let us describe the proposed parallel solution method. Authors of [4] introduced an innovative fractional time stepping
technique for solving the incompressible Navier-Stokes equations, based on a direction splitting strategy. They used a
singular perturbation of the Stokes equation with the perturbation parameter τ . The standard Poisson problem for the
pressure correction was replaced by series of one-dimensional second-order boundary value problems.
The scheme used in the algorithm is composed of the following parts: (i) pressure prediction, (ii) velocity update,

(iii) penalty step, and (iv) pressure correction. Let us now describe an algorithm that uses the direction splitting operator

A :=
(
1−

∂ 2

∂x2

)(
1−

∂ 2

∂y2

)(
1−

∂ 2

∂ z2

)
.

• Pressure predictor. The algorithm is initialized by setting p−
1
2 = p−

3
2 = p0. Next, for all n ≥ 0, a pressure

predictor is computed as follows
p∗,n+

1
2 = 2pn−

1
2 − pn−

3
2 . (2)

• Velocity update. The velocity field is initialized by setting u0 = u0, and for all n ≥ 0 the velocity update is
computed by solving the following series of one-dimensional problems

ξξξ n+1−un

τ
−νΔun+ ∇p∗,n+

1
2 = fn+

1
2 = f|t=(n+ 1

2)τ , ξξξ n+1|∂Ω = 0

ηηηn+1−ξξξ n+1

τ
−

ν
2

∂ 2(ηηηn+1−un)
∂x2

= 0, ηηηn+1|∂Ω = 0 (3)

ζζζ n+1−ηηηn+1

τ
−

ν
2

∂ 2(ζζζ n+1−un)
∂y2

= 0, ζζζ n+1|∂Ω = 0 (4)

un+1−ζζζ n+1

τ
−

ν
2

∂ 2(un+1−un)
∂ z2

= 0, un+1|∂Ω = 0. (5)

• Penalty step. The intermediate parameter φ is approximated by solving Aφ =− 1
τ ∇ ·un+1. This is done by solving

the following series of one-dimensional problems:

θ −θxx = − 1
τ ∇ ·un+1, θx|∂Ω = 0,

ψ−ψyy = θ , ψy|∂Ω = 0,
φ −φzz = ψ , φz|∂Ω = 0,

(6)

• Pressure update. The pressure is updated using the parameter χ =∈ [0, 12].

pn+
1
2 = pn−

1
2 + φ − χν∇ ·

un+1+un

2
(7)

323

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

PARALLEL ALGORITHM

In the proposed algorithm, we use a rectangular uniform mesh combined with a central difference scheme for the
second derivatives for solving equations (3)–(6). Thus the algorithm requires only the solution of tridiagonal linear
systems. The parallelization is based on a decomposition of the domain into rectangular sub-domains. Let us associate
with each such sub-domain a set of integer coordinates (ix, iy, iz), and identify it with a given processor. The linear
systems, generated by the one-dimensional problems that need to be solved in each direction, are divided into systems
for each set of unknowns, corresponding to the internal nodes for each block that can be solved independently by a
direct method. The corresponding Schur complement for the interface unknowns between the blocks that have an equal
coordinate ix, iy, or iz is also tridiagonal and can be therefore easily inverted directly. The overall algorithm requires
only exchange of the interface data, which allows for a very efficient parallelization with an efficiency comparable to
that of an explicit schemes.

MPI implementation

To solve the problem, a portable parallel code was designed and implemented in C, while the parallelization has
been facilitated using the MPI library [7, 8]. In the code, we use the LAPACK subroutines DPTTRF and DPTTS2
[see 9] for solving tridiagonal systems of equations resulting from equations (3), (4), (5), and (6) for the unknowns
corresponding to the internal nodes of each sub-domain. The same subroutines are used to solve the tridiagonal systems
with the Schur complement.
This version of the code uses MPI functions for the exchange of the data. For solving of one dimensional problems

new communicators were created usingMPI_Comm_split function.

Hybrid implementation

Our work presents perspectives of the parallelization based on the MPI and OpenMP standards. The work is
motivated by the need to improve the parallel efficiency of our implementation of the parallel algorithm. Essential
improvements of the first version of the parallel algorithm are made by introducing two levels of parallelism: MPI and
OpenMP.

Parallel code using MPI Cartesian topology functions

We study the impact of the domain partitioning on the performance of the considered parallel algorithm for solving
the time dependent Stokes equation. Here, different parallel partitioning strategies are given special attention.
Last version of the code uses MPI functions, OpenMP directives, and functions which process topologies and are

embedded in MPI standard. In order to obtain a better mapping of the processors to the physical interconnect topology,
the functionMPI_Comm_split was replaced by the following sequence:

MPI_Dims_create /* Creates a division of processors in a Cartesian grid */
MPI_Cart_create /* Makes a new communicator to which topology information has been attached */
MPI_Cart_get /* Retrieves Cartesian topology information associated with a communicator */
MPI_Cart_sub /* Partitions a communicator into subgroups which form lower-dimensional Cartesian

sub-grids */

First, a division of the processors in a 3D Cartesian grid is obtained viaMPI_Dims_create. After that a communicator
using the Cartesian topology is created using the functionMPI_Cart_create. The MPI_Cart_get is used to retrieve
the Cartesian topology information from the communicator and MPI_Cart_sub to partition the communicator into
lower dimensional sub-grids.

324

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

TABLE 1. Execution time for solving of 3D problem on Galera.

nx ny nz nodes
1 2 4 8 16 32 64 128 256

MPI code
120 120 120 348.39 155.49 67.51 32.28 15.01 7.07 3.71 3.35 4.15
120 120 240 733.36 348.81 150.16 71.35 32.85 14.92 7.09 3.65 1.99
120 240 240 1605.20 769.83 351.08 163.61 74.00 32.97 15.79 7.53 3.95
240 240 240 3358.13 1629.69 772.10 352.42 160.75 70.01 35.40 16.39 8.10
240 240 480 6930.82 3368.49 1620.76 740.29 360.66 153.15 77.78 34.60 16.82
240 480 480 14961.80 7246.11 3376.59 1597.62 792.48 357.68 175.76 77.33 35.69
480 480 480 30064.50 15348.10 7472.27 3378.68 1652.82 772.97 378.36 175.28 76.66

hybrid version
120 120 120 137.07 70.70 32.27 16.62 8.76 5.36 3.59 3.41 6.39
120 120 240 281.44 142.45 66.43 34.16 16.77 8.79 5.48 3.51 2.62
120 240 240 582.03 299.33 144.26 71.72 36.15 17.41 10.31 6.31 4.20
240 240 240 1184.09 615.22 295.62 145.24 73.65 34.18 17.84 10.72 7.26
240 240 480 2400.45 1234.29 606.84 295.88 147.28 71.36 36.47 19.24 11.67
240 480 480 5026.87 2513.60 1242.79 610.62 311.91 152.58 76.43 41.41 21.77
480 480 480 10239.10 5000.12 2503.64 1248.92 636.52 323.14 154.45 86.88 42.93

MPI + OpenMP + topology
120 120 120 137.18 68.63 34.45 16.84 10.08 5.60 4.93 3.31 4.18
120 120 240 281.57 139.53 70.26 34.50 19.46 10.05 5.38 3.60 2.66
120 240 240 580.60 293.03 146.05 72.80 40.75 20.00 10.34 6.69 4.41
240 240 240 1169.91 587.90 300.12 147.76 74.51 35.60 17.82 11.31 7.00
240 240 480 2358.86 1177.95 605.26 302.16 154.11 74.19 36.53 23.39 13.19
240 480 480 5005.15 2392.65 1264.05 629.31 324.81 154.27 76.05 52.20 26.36
480 480 480 10028.60 5174.94 2571.37 1277.57 643.94 309.76 153.88 86.71 45.43

EXPERIMENTAL RESULTS

We have solved the problem (1) in the domain Ω = (0,1)3, for t ∈ [0,2] with Dirichlet boundary conditions. The
discretization in time was done with time step 10−2. The parameter in the pressure update sub-step was χ = 1

2 , and the
kinematic viscosity was ν = 10−3. The discretization in space used mesh sizes hx = 1

nx−1 , hy = 1
ny−1 , and hz = 1

nz−1 .
Thus, the equation (3) resulted in linear systems of size nx, the equation (4) resulted in linear systems of size ny, and
the equation (5) — in linear systems of size nz. The total number of unknowns in the discrete problem was 800nx ny nz.
The parallel code has been tested on a cluster computer system Galera, located in the Polish Centrum Informatyczne

TASK and on the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center. In our experiments, times have
been collected using the MPI provided timer and we report the best results from multiple runs. In the following tables,
we report the elapsed time Tk in seconds using k nodes, the parallel speed-up Sk = Ts/Tk where Ts is the execution time
using sequential algorithm.
Table 1 shows the results collected on the Galera. It is a Linux cluster with 336 nodes, and two Intel Xeon quad core

processors per node. Each processor runs at 2.33 GHz. Processors within each node share 8, 16, or 32 GB of memory,
while nodes are interconnected with a high-speed InfiniBand network (see also http://www.task.gda.pl/
kdm/sprzet/Galera). Here, we used an Intel C compiler, and compiled the code with the option “-O3”. For
solving the tridiagonal systems of equations using LAPACK subroutines we linked our code to Intel Math Kernel
Library (see http://software.intel.com/en-us/articles/intel-mkl/).
The execution time obtained on the cluster shows significant improvement of the efficiency of the algorithm using

OpenMP directives for shared memory multiprocessing. As it was expected, there is no significant improvement on
the performance usingMPI_Cart_create function on the cluster.
Table 2 contains the speed-up obtained on the cluster. The discrete problem with nx = ny = nz = 480 requires

19 GB of memory. That is why we report the speed-up on Galera only for problems with nx,ny,nz = 120,240,480.
Specifically, for larger problems we could not run the code on a single computational unit and thus the speed-up could
be calculated.

325

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

TABLE 2. Speed-up on Galera.

nx ny nz nodes
1 2 4 8 16 32 64 128 256

MPI code
120 120 120 1.00 2.24 5.16 10.79 23.21 49.24 93.93 103.99 83.98
120 120 240 1.00 2.10 4.88 10.28 22.71 49.16 103.49 200.68 368.00
120 240 240 1.00 2.09 4.57 9.81 21.87 48.68 101.65 213.17 406.23
240 240 240 1.00 2.06 4.35 9.53 20.96 47.97 94.86 204.91 414.53
240 240 480 1.00 2.06 4.28 9.36 19.61 45.26 89.11 200.31 412.01
240 480 480 1.00 2.06 4.43 9.37 19.14 41.83 85.13 193.49 419.26
480 480 480 1.00 1.96 4.02 8.90 18.19 38.89 82.62 171.52 392.20

hybrid version
120 120 120 2.54 4.93 10.80 20.97 39.77 65.00 96.93 102.09 54.50
120 120 240 2.61 5.15 11.04 21.47 43.72 83.47 133.90 208.67 279.94
120 240 240 2.76 5.36 11.13 22.38 44.40 92.22 155.73 254.36 381.81
240 240 240 2.84 5.46 11.36 23.12 45.60 98.26 188.19 313.30 462.70
240 240 480 2.89 5.62 11.42 23.42 47.06 97.12 190.06 360.23 593.66
240 480 480 2.98 5.95 12.04 24.50 47.97 98.06 195.77 361.30 687.17
480 480 480 2.90 6.01 12.01 24.07 47.23 93.04 194.65 346.05 700.27

MPI + OpenMP + topology
120 120 120 2.54 5.08 10.11 20.69 34.55 62.26 70.63 105.22 83.37
120 120 240 2.60 5.26 10.44 21.26 37.69 73.00 136.32 203.62 276.14
120 240 240 2.76 5.48 10.99 22.05 39.40 80.27 155.19 240.03 363.61
240 240 240 2.87 5.71 11.19 22.73 45.07 94.34 188.42 296.95 479.52
240 240 480 2.94 5.88 11.45 22.94 44.97 93.42 189.75 296.26 525.59
240 480 480 2.99 6.25 11.84 23.77 46.06 96.98 196.73 286.64 567.60
480 480 480 3.00 5.81 11.69 23.53 46.69 97.06 195.37 346.71 661.74

Table 3 present execution time collected on the IBM Blue Gene/P machine at the Bulgarian SupercomputingCenter.
It consists of 2048 compute nodes with quad core PowerPC 450 processors (running at 850 MHz). Each node has 2
GB of RAM. For the point-to-point communications a 3.4 Gb 3D mesh network is used. Reduction operations are
performed on a 6.8 Gb tree network (for more details, see http://www.scc.acad.bg/).We have used the IBM
XL C compiler and compiled the code with the following options: “-O5 -qstrict -qarch=450d -qtune=450”. For solving
the tridiagonal systems of equations using LAPACK subroutines we linked our code to Engineering and Scientific
Subroutine Library (ESSL) (see http://www-03.ibm.com/systems/software/essl/index.html).
The memory of one node of IBM supercomputer is substantially smaller than on Galera and is not enough for

solving 3D problem with nx = ny = nz = 240. We solved these problems on two and more nodes. The execution time
obtained on the supercomputer shows improvement of the efficiency of the algorithm using OpenMP directives. The
last version of the code is the fastest when we solve the problem on 64, 128, 256, and 512 nodes of the supercomputer.

Table 4 shows the speed-up obtained on the supercomputer. Because of smaller memory on one node of the IBM
Blue Gene/P we calculated the speed-up only for nx = 120 and ny,nz = 120,240.
Finally, computing time on both parallel systems is shown in Fig. 1. Because of the slower processors, the execution

time obtained on the Blue Gene/P is substantially larger than that on the Galera. At the same time, the parallel efficiency
obtained on a large number of nodes on the supercomputer is better. The main reason of this can be related to the
superior performance of the networking infrastructure of the Blue Gene.

CONCLUSIONS AND FUTURE WORK

We have studied parallel performance of the recently developed parallel algorithm based on a new direction splitting
approach for solving of the 3D time dependent Stokes equation on a finite time interval and on a uniform rectangular
mesh. The performancewas evaluated on two different parallel architectures. In order to get better parallel performance
using four cores per processor on the IBM Blue Gene/P (and future multi-core computers) we developed mixed

326

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

TABLE 3. Execution time for solving of 3D problem on IBM Blue Gene/P.

nx ny nz nodes
1 2 4 8 16 32 64 128 256 512 1024

MPI code
120 120 120 1623.59 769.55 370.32 177.48 115.22 45.41 23.24 12.51 7.05 3.72 2.73
120 120 240 3248.27 1601.47 763.08 371.15 175.98 117.95 45.83 24.45 13.77 6.97 5.03
120 240 240 6582.40 3264.95 1621.69 781.96 351.38 178.79 117.66 48.48 26.31 13.63 9.57
240 240 240 6638.63 3318.05 1662.52 793.75 382.38 184.69 123.06 52.14 26.76 15.49
240 240 480 6634.37 3320.41 1647.09 787.36 383.79 189.97 147.75 51.74 29.97
240 480 480 6717.84 3355.70 1663.86 804.80 377.84 195.58 127.11 58.38
480 480 480 6783.02 3384.23 1700.44 829.58 406.70 199.71 135.32

hybrid version
120 120 120 549.73 265.11 132.38 65.82 49.01 18.25 9.90 6.59 4.35 2.61 2.21
120 120 240 1126.59 553.89 273.40 134.04 67.09 48.61 18.31 11.09 7.41 4.49 3.02
120 240 240 2252.34 1100.37 561.77 269.62 134.44 69.12 49.28 20.99 12.44 7.78 5.26
240 240 240 2302.57 1165.82 569.95 278.79 141.25 70.60 55.56 23.60 13.53 9.37
240 240 480 2387.11 1163.34 576.29 288.13 142.08 75.37 57.33 24.36 14.90
240 480 480 2314.18 1141.05 585.53 283.22 149.53 80.80 59.24 27.63
480 480 480 2367.99 1204.88 592.13 305.63 162.97 85.47 66.98

MPI + OpenMP + topology
120 120 120 549.17 262.83 131.94 65.97 49.04 17.84 9.85 6.53 4.23 2.56 2.25
120 120 240 1125.37 561.52 271.08 133.87 70.23 49.66 18.22 11.10 7.28 4.37 3.06
120 240 240 2247.47 1117.46 566.45 274.94 137.27 68.26 49.48 20.98 12.30 7.61 5.30
240 240 240 2278.33 1148.40 584.24 289.53 140.43 70.42 54.47 23.14 13.17 9.29
240 240 480 2298.72 1164.64 594.57 290.60 141.66 75.35 56.98 23.72 14.92
240 480 480 2323.60 1180.71 594.29 282.45 149.46 80.24 58.40 27.61
480 480 480 2383.30 1191.96 590.37 303.45 161.87 83.82 65.62

TABLE 4. Speed-up on IBM Blue Gene/P.

nx ny nz nodes
1 2 4 8 16 32 64 128 256 512 1024

MPI code
120 120 120 1.00 2.11 4.38 9.15 14.09 35.75 69.87 129.82 230.43 435.96 594.70
120 120 240 1.00 2.03 4.26 8.75 18.46 27.54 70.88 132.86 235.95 465.97 646.38
120 240 240 1.00 2.02 4.06 8.42 18.73 36.82 55.95 135.78 250.18 482.82 687.72

hybrid version
120 120 120 2.95 6.12 12.26 24.67 33.13 88.97 164.03 246.49 372.85 621.32 734.01
120 120 240 2.88 5.86 11.88 24.23 48.42 66.82 177.45 293.02 438.55 723.49 1074.37
120 240 240 2.92 5.98 11.72 24.41 48.96 95.23 133.57 313.66 529.22 846.59 1250.99

MPI + OpenMP + topology
120 120 120 2.96 6.18 12.31 24.61 33.11 90.99 164.79 248.77 383.74 634.30 722.66
120 120 240 2.89 5.78 11.98 24.26 46.25 65.40 178.28 292.73 446.31 743.00 1062.03
120 240 240 2.93 5.89 11.62 23.94 47.95 96.44 133.02 313.68 534.95 865.49 1242.42

MPI/OpenMP code. Furthermore, we synchronized the decomposition of the computational domain into sub-domains
with the topology of the compute nodes in the Blue Gene connectivity network. In such way the communication time
in the parallel algorithm is minimized.
In the near future, it is our intention to consider and compare the performance of this algorithm to other efficient

methods for solving of the time dependent Stokes equation.

327

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

101

102

103

 1 4 16 64 256 1024

Ti
m

e

number of nodes

Execution time

BG/P nx=ny=nz=120 v1
BG/P nx=ny=nz=120 v2
BG/P nx=ny=nz=120 v3
BG/P nx=ny=nz=240 v1
BG/P nx=ny=nz=240 v2
BG/P nx=ny=nz=240 v3

Galera nx=ny=nz=120 v1
Galera nx=ny=nz=120 v2
Galera nx=ny=nz=120 v3
Galera nx=ny=nz=240 v1
Galera nx=ny=nz=240 v2
Galera nx=ny=nz=240 v3

FIGURE 1. Execution time for 3D problem, nx = ny = nz = 120,240, v1 means MPI code, v2 — MPI + OpenMP, v3 — MPI +
OpenMP + Cartesian topology functions

ACKNOWLEDGMENTS

Computer time grant from the Bulgarian Supercomputing Center (BGSC) is kindly acknowledged. N. Kosturski and
I. Lirkov were partially supported by grant DCVP 02/1 of the Bulgarian NSF. Work presented here is a part of the
Poland-Bulgaria collaborative grant “Parallel and distributed computing practices”.

REFERENCES

1. A. J. Chorin,Math. Comp. 22, 745–762 (1968).
2. R. Temam, Arch. Rat. Mech. Anal. 33, 377–385 (1969).
3. J.-L. Guermond, P. Minev, and J. Shen, Comput. Methods Appl. Mech. Engrg. 195, 6011–6054 (2006).
4. J.-L. Guermond, and P. Minev, Comptes Rendus Mathematique 348, 581–585 (2010).
5. M. Ganzha, K. Georgiev, I. Lirkov, S. Margenov, and M. Paprzycki, “Highly Parallel Alternating Directions Algorithm for
Time Dependent Problems,” in Applications of Mathematics in Technical and Natural Sciences, AMiTaNS 2011, edited by
C. Christov, and M. Todorov, 2011, vol. 1404 of AIP Conference Proceedings, pp. 210–217.

6. I. Lirkov, M. Paprzycki, M. Ganzha, and P. Gepner, “Parallel alternating directions algorithm for 3D Stokes equation,” in
Proceedings of the Federated Conference on Computer Science and Information Systems, edited by M. Ganzha, L. Maciaszek,
and M. Paprzycki, IEEE Computer Society Press, 2011, pp. 443–450.

7. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference, Scientific and engineering
computation series, The MIT Press, Cambridge, Massachusetts, 1997, second printing.

8. D. Walker, and J. Dongarra, Supercomputer 63, 56–68 (1996).
9. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, 1999, third edn.

328

Downloaded 09 Oct 2012 to 213.191.204.24. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

