
Scalable Computing: Practice and Experience

Volume 10, Number 4, pp. 397–411. http://www.scpe.org
ISSN 1895-1767
c© 2009 SCPE

MIRRORING INFORMATION WITHIN AN AGENT-TEAM-BASED INTELLIGENT GRID

MIDDLEWARE; AN OVERVIEW AND DIRECTIONS FOR SYSTEM DEVELOPMENT

MARIA GANZHA, MARCIN PAPRZYCKI, MICHAL DROZDOWICZ∗, MEHRDAD SENOBARI†, IVAN LIRKOV,

SOFIYA IVANOVSKA‡, RICHARD OLEJNIK§, AND PAVEL TELEGIN¶

Abstract. This work concerns part of our project, devoted to the development of an agent-team-based Grid resource brokering
and management system. Here, open issues that have to be addressed in the process, concern agent team preservation. In our
earlier work it was suggested that this can be achieved through mirroring of key information. Here, we discuss in detail sources of
useful information generated in the system (an agent team in particular) and consider which information should be mirrored, when
and where, to increase long-term sustainability of an agent team.

1. Introduction. Our work is devoted to the development of an agent-team-based high-level intelligent
Grid middleware. In our earlier work we have conceptualized a number of scenarios which require access to
information that was generated within the team. For instance, it is assumed that when a team leader (the
LMaster agent) receives (from an agent representing a User ; the LAgent) a Call for Proposals (CFP) asking
about conditions of executing a specific job, its response (an offer, or a rejection) should be based on its
knowledge of the potential client (User that the LAgent represents), as well as of current market conditions
(see, [20, 13]). Such knowledge is to be grounded in historical data collected during past interactions with
potential client(s). For instance a series of unsuccessful bids for jobs may indicate that the suggested price is
too high. Since we assume ([25]) that a global Grid is a highly dynamic structure, in which nodes can disappear
practically without any notice, it is important to assure that the team knowledge will not be lost when its leader
crashes. Therefore, in [14, 26] we have suggested that support for long-term existence of agent teams may be
achieved through utilization of information mirroring. Specifically, we have proposed that in each team an
LMirror agent should be created, and its role should be to store a copy of all information necessary to prevent
team disintegration in the case of crash of the LMaster. However, thus far we have not delved into any details
as to what needs to be mirrored, when and how.

The aim of this paper is to describe sources of information that can be useful for an agent team in the
context of its survival. Furthermore, we discuss when such information should be mirrored and how. To this
effect we proceed as follows. In the next section we present a brief overview of the proposed system, as well as
arguments for the need of information mirroring. We follow with presentation of sources of information that
is to be collected. In each case we discuss when and where this information has to be persisted. Finally, we
discuss what consequences does utilization of an outsourced data warehouse (to mirror team data) on procedures
involved in recovering crashed LMaster and LMirror agents. Discussion includes a proposal for the structure
of such data warehouse. Material presented here extends results introduced in [19].

2. System overview. To present a high-level overview of the system as well as to discuss two of its main
functionalities: (i) Worker joining a team, and (ii) team accepting a job to be executed; we will utilize an AML
Social Diagram ([11]) in figure 2.1.

In the approach utilized in our system, agents work in teams. Each team is managed by its “leader,” the
LMaster agent. Agent teams utilize services of the Client Information Center (represented by the CIC agent),
to advertise work they are ready to do and, possibly, Workers they are seeking. In addition to the LMaster

and Workers, each team consists of an LMirror agent. This agent stores a copy of information necessary for
the team to persist in case when the LMaster crashes.

When the User is seeking a team to execute its job, it specifies job constraints to its representative, the
LAgent. The LAgent contacts the CIC to obtain the list of teams that can execute its job and utilizes trust
information and the FIPA Contract Net protocol ([5]) to either find a team that can do the job, or establish
that such team cannot be found (within the specified constraints).

∗Systems Research Institute Polish Academy of Science, Warsaw, Poland
†Tarbiat Modares University, Tehran, Iran
‡Institute for Parallel Processing, Bulgarian Academy of Sciences, Sofia, Bulgaria
§University of Sciences and Technologies of Lille, Lille, France
¶SuperComputing Center Russian Academy of Sciences, Moscow, Russia

397

398 Maria Ganzha et al.

Fig. 2.1. AML social diagram of the proposed system

When the User would like to earn money by offering services of its computer(s), by becoming a Worker

in a team, it specifies its conditions of joining (working for the team, e.g. the minimal “salary”). The LAgent

interacts with the CIC to obtain a list of teams that are seeking Workers (satisfying characteristics of hardware
and software it represents). Next, it utilizes trust information and the FIPA Contract Net protocol to establish
if a team to join can be found. In both cases, trust information is a part of LAgent ’s knowledge. At the
same time, when responding to the CFP from LAgents, the LMaster utilizes the Team knowledge (more about
LMaster responses can be found in [26, 20]).

3. Need for information mirroring. While issues involved in collecting knowledge by the LAgent, and
utilizing it in decision making supporting the User are interesting, we focus our attention on processes taking
place within the agent-team. This is especially so, since persisting information stored by the LAgent can be
done by regularly backing-up the data (the same way as any User data should be backed-up).

Now, let us recall, that one of our key assumptions is that in the case of a global Grid any node can disappear
practically without warning, and for an unspecified time (in the global Grid nodes are assumed to belong to
individuals and thus, for all practical purposes, there are no guarantees of service). Obviously, this assumption
has to be applied also to the LMaster agent (specifically, the node that it resides on). Let us now see what
happens when the LMaster becomes unavailable and there is no mirroring in the team.

First, let us consider the case of a short-term disappearance of the LMaster. Since it is the “gateway agent”
for the team, problems arising in this case involve, among others, contract negotiations (sending CFP to the
LMaster or awaiting its response). Here, a short-term disappearance of the LMaster could result in loss of some
potential contract (there would be no agent to send the CFP to, receive a response from, or confirm a contract
with). Furthermore, since the LMaster is the gateway through which contracted jobs are sent to the team, and
results sent back to Users, its short-term crash would result in some Users starting to believe that the team
disintegrated. As a result, the reputation of the team would be damaged and some Users would not work with
it again (these Users that were not able to contact the team during the LMaster crash). Recall that after the
CIC delivers to the User the list of teams that potentially can complete its task, this list is pruned out of all
teams that are not considered trustworthy.

Second, let us consider the fact that the LMaster is the only agent in the team that Workers know about
(we assume that Workers do not know each other; at least such knowledge does not originate from the setup
of our system). Thus, disappearance of the LMaster that lasts more than a few minutes, is likely to result in
Workers not being able to send results of completed tasks and/or receive new tasks to work on (the only reprieve
for the LMaster would be if all workers would execute long-lasting jobs and the LMaster would be back before
any of them was completed). As a result Workers would consider their team (leadership) not trustworthy, leave
it and not come back (see, [20]).

Finally, there is a scenario in which the LMaster crashes and “does not recover” (long-term disappearance,
possibly with a serious data loss). Let us say that there was a fatal hard drive crash and there was no backup (or

Mirroring information within an agent-team-based intelligent Grid middleware 399

the last backup was done long time before the crash). In this case the above mentioned problems are seriously
magnified:

• since the LMaster is the only gateway between Users and the team, all jobs will be lost and thus the
“User-reputation” of the team will be damaged very seriously; it is doubtful that Users would be willing
to work with this LMaster, as a team leader, again

• the team will disintegrate, as Workers will have no LMaster to lead them; it is doubtful that any
Worker affected by the crash would be willing to work with this LMaster again; furthermore, the
LMaster after recovery will have no up-to-date knowledge about make-up of its team

• substantial part of other collected knowledge will be gone and thus the LMaster, even if it returns and
tries to form a new team, will have to start from the scratch; but this would be very cumbersome indeed
(while the team knowledge is gone, the competition / other teams will capture the “market share”).

Thus, even a temporary disappearance of the LMaster would have serious consequences because of both
Users and Workers considering it not worthy of trust. As a result, the team would lose Workers and stream of
revenue (Users would not contract jobs with it) and would very likely disintegrate.

In response to these challenges we have decided to use a well-known strategy of data mirroring [1, 4, 23,
22, 33]. In [12, 25, 27] we have proposed that an LMirror agent should be created, with the role of keeping
a copy of information needed to keep the team alive and competitive. Furthermore, in [28] we have specified
procedures of restoring the LMaster and the LMirror in the case when either one of them crashes.

Obviously, we are well aware of the fact that instantaneous (or, even, almost instantaneous) crash of both
the LMaster and the LMirror would have exactly the same consequences as crash of the LMaster that did
not have an LMirror and data backup (would result in destruction of the team). However, our approach is
not focused on developing a completely bullet-proof system, but our goal is to create a reasonably resilient
infrastructure. In this context observe that, as the time passes, it can be assumed that, in best teams, roles
of the LMaster and the LMirror will be played by more-and-more reliable machines. Specifically, when the
LMaster selects the LMirror, it will pick for this job the “best possible” Worker. It will do so by utilizing the
reliability information it has accumulated thus far (see, [20]). When this LMirror becomes the next LMaster

it will also select the best LMirror available at this time. In this way the overall strength and reliability of
“team leaders” should continue to increase. Obviously, from what we described here follows that as the time
passes weakest teams may be naturally eliminated. Specifically, teams with unreliable LMasters and LMirrors

will either fall apart when both these agents crash at almost the same time, or due to repeated temporary
disabilities, lose chances of winning new contracts or fulfilling existing ones. As a consequence such teams will
lose Users ’ trust, while their Workers will not come back (to work for a “bad team”); and this will result in
diminishing funding and, finally, team disappearance.

In our earlier work we have focused our attention on the structure of the team, and on the way that lost
leader agents are replaced (and the structure of the team restored). Now, we will consider three key issues:
(1) what information should be mirrored, (2) when should it be mirrored, and (3) where should it be mirrored.

4. What should be mirrored, when and where.

4.1. Team member data. For any team, the most crucial is information about its members. Each time
a new member joins the team, the LMaster obtains the following information (note that all information is
“managed” utilizing an extended Grid ontology; see [17]):

1. ID of the LAgent that is joining the team (Worker name). Since we have assumed that each agent
utilizing our system has to be registered within it (this function is one of the roles of the CIC infrastruc-
ture), it is possible to check the registration of the potential Worker, before accepting it into the team
(see, [15] for more details). This can be treated as a mini-security measure; one that can be extended
as the system develops.

2. Available resources. While in [13] we have proposed a very minimalistic ontology of resources, we
have known all along that a more detailed one is needed. More recently, in [30] we have presented an
overview of Grid and agent-Grid ontologies and came to the conclusion that an extended (and somewhat
modified) CoreGrid ontology [37] will be the base ontology for our system. Thus, this ontology will
be also used to formulate an offer to join the team. Specifically, in the CFP the LAgent will include
information about resources offered to the team. At this point, as we are considering resources in terms
of computing nodes (consisting of hardware and software), the top entity of the resource description
will be the ComputingComponent class and its subclasses—ComputingElement and WorkerNode. This

400 Maria Ganzha et al.

will enable Worker agents to represent either a single computing resource (WorkerNode) or a set of
computing nodes, managed by some low level resource broker (ComputingElement, containing a set of
WorkerNodes). Instances of both of these classes can have their hardware and software capabilities
described by properties such as (this list is not exhaustive):

• hasCPU—related to the CPU class and describing the processor in terms such as: platform, vendor,
model, clockSpeed, coreCount, l1CacheSize, l2CacheSize, etc.

• hasMemory—linking to the Memory concept described by the Size property.
• hasStorage—related to the StorageSpace class described further by the StorageInterface and the
FileSystem concepts.

• installedSoftware—describing any software components of the node (the Software class) such as
the operating system, application environment and installed libraries.

• runningService—any services running on the resource (e.g. OpenPBS broker running on the
ComputingElement node).

This information about the new Worker will be then stored by the LMaster and used, among others,
for (1) contract negotiations, and (2) job scheduling (see also [31]).

3. Details of the contract. As can be found in [28], we have suggested that the contract proposal should
contain: (a) specification of the time of availability (e.g. every night from 1AM till 6AM), (b) length of
contract (e.g. 2 weeks). However, results obtained by the MiG project (see, for instance papers available
at [3]) illustrate that more complex sets of informations can be involved in both contract negotiations
as well as in the contract (e.g. a contract with max payment value). Obviously, in the response the
proposed payment for the Worker (and its structure) is to be provided. These details (regardless of
their final complexity, resulting from extended analysis of possible economical models) constitute the
description of the contract between the LMaster representing the team and the Worker.
The exact way of modeling these concepts in our Grid ontology is in progress, however currently, they
are described using the WorkerContract class along with the following properties:

• revenuePerHour—numerical value describing the price the Worker is paid for each hour of its
readiness to work.

• availability—a multivalued property containing times of days during a week during which the
Worker is available for job processing. The domain of this property is a list of AvailabilityPer-
iod class instances, described by properties: startDayOfWeek, startTimeOfDay, endDayOfWeek,
endTimeOfDay.

• contractStartTime—date and time when the contract came into effect.
• contractLength—the length of the contract in days.

Out of these three items, one has to be mirrored immediately—the ID of the Worker. Without it it will be
impossible to contact it in the future. The remaining two could be recovered from the Worker.

As far as the resources of the Worker are concerned, we have also to take into account the fact that in the
system under consideration it is expected to that the LAgent will “remain the same” (its ID does not change)
for a long time, while the resources it represent may change. Let us consider two scenarios. First, the LAgent

represents one or more “home PC’s.” Here, machines can be added to the pool, removed from the pool, and/or
upgraded. Obviously, such changes are not likely to happen each time the LAgent interacts with the team.
However, it is even possible that one of home machines will be relatively regularly added to, and removed
from, the pool of available resources. Second, the LAgent represents a Grid (e.g. an ADAJ based desktop Grid;
see [15] for more details). This case can be expected to be even more dynamic as it is possible that each time the
LAgent joins the team it will represent a Grid that is configured out of a different set of machines. Therefore,
information about resources represented by a given LAgent is not static and needs to be stored each time it joins
the team. Furthermore, it should now be obvious that in the case of long-term contracts it may be necessary
to regularly update information about available resources (particularly in the case of an LAgent representing a
Grid or a Cloud). Therefore, as a result of possibility of such changes a different type of a contract may need
to be negotiated. This latter issue we will, however, omit as being out of scope of this paper.

Let us now consider the question of preservation of details of the contract. When designing our system
we have assumed that participating agents will not only be benevolent, but also their behaviors will be “team-
supporting” (pro-social). In other words, all participating agents will try, to the best of their abilities, to
cooperate with others. However, such assumption is rather unrealistic when real-world situations are to be
considered. Moreover, in the agent literature it is quite often the case that non-collaborating, anti-social

Mirroring information within an agent-team-based intelligent Grid middleware 401

agent behaviors are considered (see, among others, work of D. Grosu, for instance [21]; or H. Hexmoore, for
instance [36]). Taking this into account one can envision a malevolent Worker who tries to take advantage of
crashing of the LMaster by providing the LMirror with details of the contract that have been modified to its
advantage. Therefore, one of the easy ways of preventing such misbehavior of the Worker, is to mirror details of
all contracts. In other words, information about the contract of the new/returning Worker should be mirrored
as soon as the contract is signed (the FIPA Contract Net Protocol is completed).

Summarizing, information about ID of the worker (item (1), above) has to be mirrored immediately; in-
formation about details of the contract (item (3), above) should be mirrored immediately to prevent potential
fraud; while information of resources represented by a given Worker (item (2), above) does not need to be
mirrored. However, since information about items (1) and (3) is to be mirrored, it seems reasonable to mirror
also information describing available resources (item (2)). In this way crashing of the LMaster will not disturb
Workers with unnecessary exchanges of messages with the new LMaster ; preserving resources of both sides.
Note that the total amount of information mirrored here is proportional to the number of Workers in the
team (modulo the number of machines that each one of them represent) and thus should not be very large.
Furthermore, change in the total size of mirrored data can be estimated in the case of planned team expansion
or reduction (e.g. it is easy to establish how much disk space will be required if another Worker representing
N machines is to join or leave the team).

4.2. Job contracts and their execution. In [14, 13, 12] we have specified a very limited set of parameters
describing job contracts. In the CFP, the potential User could specify the following parameters: (a) job start
time, (b) job end time, and (c) resource requirements (where resources have been limited to available hardware—
matching resource information obtained from each Worker ; see the previous section). In the response, the price
for executing that job was proposed by the LMaster. As noted above, when introducing to our system a full-
blown ontology of the Grid, additional job constraints are going to be added. However, this does not affect
considerations presented here. Obviously, as soon as the contract is signed (FIPA Contract Net Protocol is
completed), all data concerning it has to be mirrored. Information about signed contracts is crucial to the
continued existence of the team, as each signed contract means income for the team. Furthermore, losing
information about a contract would mean that it would either not be completed, or results would have no User

to be sent to (the latter would happen in the case, when information was lost while the task was already being
executed by one of the Workers). In both cases, the team would rapidly lose its reputation and potential future
contracts ([20]). Furthermore, as noted above, as soon as the assumption about pro-social, benevolent attitude
of all agents in the system is relaxed, one of the ways to protect interest of all parties is to mirror all contract
information.

Signing a contract leads to an issue that is interesting in its own right: what should happen with job-related
files? As it is obvious for anyone working with Grids (and illustrated in [35]), a typical job description involves
a file (or multiple files, when job orchestration is concerned) that contains the code, and one or more data files.
The first possibility would be to request files from the LAgent at the time when the job is “about to start.”
This approach would reduce the burden on the team. When the job was to start (either because of contract
stipulation—the job start time condition—or because time to execute a given job has come) the LMaster would
contact the LAgent with a request to send all necessary files. The disadvantage of this solution is that there is
no guarantee (and in this case there should be none) that the LAgent is going to be available at the time when
the files are to be requested. From the point of view of the LAgent its job is to negotiate the contract, deliver the
files to the team that is to complete the task, and receive the results. In the meantime the LAgent can be off-line
(computer it resides on can even be switched off). This is particularly the case when the job end time condition
is a part of the contract (it will come back to life when it is time to pick up the results). This brief analysis
points out to the fact that we have to assume that completing the contract is primarily the responsibility of
the agent team. As soon as the LMaster signs the contract, the team takes responsibility for completing the
task (note that the payment for completing the task can be assured using appropriate proxy mechanisms; [20]).
Therefore, solution that expects files defining the task to be transferred when the job is about to start is not
acceptable. Such files have to be transferred to the LMaster immediately after the contract is signed.

With this in mind, let us consider possible actions of the LMaster that has received all files pertinent to
a newly contracted job. Naturally, the LMaster could immediately establish which Worker is to execute the
job and initiate job staging, by sending all files to that Worker. Unfortunately this is the situation when, our
fundamental assumption—about highly dynamic nature of nodes in the global Grid comes to play. Determining,

402 Maria Ganzha et al.

well ahead of job start time, whichWorker is going to execute it, seems to be against the very nature of utilization
of agent systems. Here, the robustness and efficiency of such systems comes from their flexibility (e.g. ability
to negotiate and re-negotiate “job contracts;” as described, for instance, in [32, 8, 7]). Therefore, it seems that
it would be much better to stage jobs according to the actual state of the system at the the time of job start
(rather than on the basis of the predicted state of the system). This approach should allow to avoid influence
of unexpected factors, such as, for instance failure of some Workers. This means that data files should not be
immediately transfered from the LMaster to the Worker. Combining these two observations we realize that all
files necessary to complete the job have to be held by the LMaster until the start of job execution. This means,
in turn, that these files have to be mirrored.

As soon as the job is completed, its results have to be sent back to the User. Now, let us recall that the
only agent that knows the User is the LMaster and thus the LMaster has to send them back. Here, there exist
two possible mirroring options. First, while the LMaster keeps a copy of results, the second copy is kept by the
Worker ; until it receives a confirmation from the LMaster that they were successfully delivered to the User. In
this way we, again, have two copies of sensitive material available in the system. Furthermore, note that the
overall reliability of the Worker is assumed to be smaller than that of the LMaster and the LMirror (the latter
two agents have been selected on the basis of much more stringent criteria, and their overall capabilities and
their reliability should improve as the team continues to exist). Therefore, the situation in which important
data is not “properly” mirrored should not be sustained for an extended time. However, note that the Worker

can end its contract and not come back to the team. In this case, if the LMaster crashes, results could be lost
before they are delivered to the User. To deal with such situation, if data cannot be delivered immediately to
the User (e.g. an appropriate LAgent is not available), results have to be mirrored as any other sensitive data
and the Worker should be released from the duty of keeping a copy.

Information about job completion and successful delivery of results has to be stored. It is going to be
useful, first, for utilization in job scheduling (see, for instance, [31] and references collected there). Second, for
contract disputes, and third, for considerations concerning trust. Interestingly, only the fact that the job has
been completed and its results successfully delivered to the customer, has to be mirrored immediately (this
information describes the current status of the team, which has to be kept up to date). Information needed for
future job scheduling does not have to be mirrored immediately. Losing some data about execution times of
some jobs (due to the crash of LMaster) does not pose a threat to the existence of the team. Similarly, some
information related to trust assessment of a Worker may be lost without damaging the team. Therefore, these
two item-sets can be mirrored in a digested form in pre-specified time intervals (see subsequent sections).

4.3. Trust information. Thus far we have dealt primarily with information that has to be mirrored
immediately, now we devote our attention to the remaining data generated in the system. In [20] we have
considered issues related to trust in relationships between Users and LMasters (teams) and between LMasters

and their Workers. We have shown that, utilizing a proxy environment (similar, for instance, to PayPal [2])
it is possible to assure that payment for a completed job is always delivered. Therefore, for the purpose of
this paper, we are interested only in relationships between the LMaster and its Workers. Obviously, since we
are interested in information mirroring within agent teams, the way that trust information is to be stored by
Workers is not considered.

Following the discussion presented in [20] we assume that, for the time being at least, contract between
Worker and the team (the LMaster) is based on paying the Worker for availability (not for actual work done);
i. e. Worker contracted for 6 hours every night will be paid for this many hours and will be expected to be
available within that time-frame to do work, if called. It was also stipulated that, at least for some contracts,
Worker will have a right to not to be available for a limited number of times during the contracted time.
Here, we can use the “pinging-mechanism” described in [12] to monitor Worker availability. Under these
assumptions, in [20] we have proposed that for each Worker we will collect information how many times (a) it
fulfilled the contract (#fc)—was available all the time when it was expected to be available (if in the contract
it was stated that it can be missing for a certain number of times, this is exactly the number of times it was
missing); (b) violated the contract (#vc)—was not available when it was supposed to be; and (c) did more than
contract required (#ac)—could have been unavailable for a specific number of times during a contract, while was
available all the time. This combined data will be stored, for each Worker, as a quadruple (n,#fc,#vc,#ac),
where n is the total number of contracts. While this information is collected in a cumulative form (and thus
is of size proportional to the number of Workers in the team), we have also access to additional information

Mirroring information within an agent-team-based intelligent Grid middleware 403

that can be used for assessment of trust / reliability of a Worker. First, detailed information about results
of each “pinging-procedure,” and second, detailed information about completion (or not) of each assigned job
(e.g. how much time a given job took, was it completed on time, before time, or delayed, etc.). Note that the
results of the “pinging-procedure” can be used also to adjust time within which response from a given agent is
expected (in this way system will be able to adapt its behavior to the network conditions of each Worker ; see,
also [28]). Since the latter data is not proportional to the number of Workers in the team, but to the number
of “pinging-procedures” and processed jobs, we consider it separately in section 4.4.

Obviously, the trust-related information has to be mirrored. However, it is easy to realize that loss of
some of this information is not catastrophic for the team; e.g. not updating immediately number of fulfilled
contracts for a specific Worker will result in proceeding with the old trust assessment (note that the basic
data is cumulative). Therefore, it is enough to update information about trust related issues in a digested
format at predefined time-intervals. Frequency of updates depends on the nature of jobs that a given team is
executing and on the nature of Worker contracts. If a team is contracting long-lasting jobs and its members
have long-term contracts, then update of trust information can occur much less frequently than in the case
when large numbers of short jobs are completed by a team consisting of Workers with short-term contracts.
We believe that a good approximation of the right time to send an update of trust information to the LMirror

is when, in average, each Worker has completed one contract. Note that updates of information can be sent
at any time, which allows the LMaster to adaptively adjust time between updates depending on the nature of
jobs and contracts currently existing in its team.

4.4. High volume data collection and storage. Most information considered thus far within the system
was relatively small in volume—on order of the size of the team, or of the number of currently contracted jobs
(note that in the latter case files related to some jobs may be large, but this is unavoidable). There are, however,
important data sets that grow over time and can become very large. First, data generated during negotiations
between the LMaster and Users who would like either to contract job execution, or join the team. This data is to
be used to establish market conditions and introduce team behavior adaptivity to the system (see, also [12, 20]).
Second, information about execution of completed jobs (e.g. hardware used, software required, execution time,
Worker completing the job, etc.). This data can be used to apply advanced scheduling techniques (for more
details, see [31], and references collected there). Third, detailed information about behavior of each worker
(e.g. detailed history of execution of each job, results of “pinging-procedures,” etc.). This information is crucial
to build a realistic and comprehensive economy-based job scheduling model (which includes also trust and
reliability related considerations).

Let us first consider contract negotiations. In [34, 6, 9, 10] a large variety of negotiation mechanisms that
can be applied in a Grid have been described. However, in the initial implementation of our system, for both
types of contract negotiations (job execution, or joining a team), we have decided to utilize the FIPA Contract
Net Protocol ([5]). The primary reason was that while allowing for “calls for proposals” with practically
unlimited variety of constraints, it generates the contract (or establishes impossibility of an agreement) within
a single round of negotiations. This also reduces the total amount of information that needs to be stored for
further use (compare, for instance, with the amount of data generated during any of the multi-round auction
mechanisms; see [16]). Therefore, in our system, information about a single job contract negotiation would
consists of:

• Content of the CFP—containing, among others, information what hardware and/or software was
sought; job start time (if specified); how much time was to be contracted / or was it an open-ended
contract?

• Content of the response—what was the price proposed by the LMaster, as well as other details of the
proposed contract; e.g. the proposed hardware (when the CFP specifies the minimum requirements,
while the response proposes the actual configuration that the task will be executed on), etc.

• Result of the negotiation—was it a success, or not?

Note that, with a rich vocabulary provided by the extended Grid ontology, it will be possible to reconsider
the utility of multi-round Service Level Agreement negotiations.

In the case of negotiation concerning a Worker joining the team, at least the following information becomes
available (introduction of a full-blown Grid ontology will allow utilization of more complex negotiation scenarios):

• Content of the CFP—including information about available hardware and software, length of contract
and conditions of availability,

404 Maria Ganzha et al.

• Content of the response—the proposed price
• Result of the negotiation—did the Worker join the team, or not

Note that, regardless of the particular form of negotiation used, amount of available data will be large.
Specifically, it will be proportional to the total number of contract negotiations that a given team participated
in. Furthermore, this dataset will be constantly increasing in volume.

Interestingly, in all cases, data collection is resilient to loss of some information. In other words, losing some
of the data may decrease competitiveness of the team (e.g. when performing data mining to find the current
“value” of various resources that the team currently consists off, the result may be somewhat incorrect due to
the fact that some data was lost), but the process is characterized by graceful degradation. Therefore, it is
possible to perform updates in a digested fashion at times of reduced utilization of the system, while risking
that some data will be lost if the LMaster crashes in the meantime.

It should be now obvious that constantly increasing volume of data makes mirroring very costly. We can
point to at least three important issues that need to be taken into account.

1. The total amount of data that has to be regularly passed from the LMaster to the LMirror is not small.
This is the case even when digested information is transferred in a compressed form. Here, we deal
with a constant stream of data, size of which depends on the size of the team and the level of activity
within it.

2. Constantly increasing volume of data has to be stored by both the LMaster and the LMirror. Even
assuming that over time capabilities of both managerial agents improve, and taking into account that
storage is cheap and plentiful, collecting data generated during management of a large and active team
that exists for an extended period of time, may be prohibitive for most home PC’s. This will, in turn,
introduce a new stratification into the Grid. Its Users will be divided into those who can and those
who cannot manage the team due to the storage restrictions of their computers.

3. The time of recovery of a crashed LMirror, and of the second step of replacing a crashed LMaster (in
the first step the new LMAster replaces the LMirror on the same machine, and thus no data transfer is
needed) is going to grow with the data size. It is important to realize that (re)creation of a new LMirror

involves copying an entire set of mirrored data to the new location. For large, active teams that exist
for a long time, such data set can be very large. As a result transfer involving ACL messages is not
feasible. The only reasonable solution seems to be a direct data transfer between computers that host
both agents. However, even this process can take considerable amount of time, if it is performed over
the Internet. Now, let us take into account that, as suggested in [27], recovery of a crashed managerial
agent stops the other managerial agent from doing anything else (to re-establish security of existence
of the team; brought about by data mirroring). This means that as the time passes each crash of the
managerial agent takes longer to recover from (more data to be mirrored) and, for all practical purposes,
stops the team operation for an ever increasing time. Therefore, such approach seems infeasible in a
long run.

In this context note that, to reduce potential impact of increasing volume of collected data, it would be
possible to store only the newest information (e.g. a “sliding window” consisting of K most current data items).
However, the primary reason to collect a “complete set of historical data” is to be able to apply data mining
techniques to extract useful information out of it. Decreasing the amount of collected data, by including only
the most current items, could reduce effectiveness of data mining and thus contradict the reason to collect this
data in the first place. Therefore, it seems to be in the best interest of the team to preserve as much of historical
data as possible.

Considering this, on the basis of the current trend of IT infrastructure—outsourcing and specialization,
we propose that an outsourced data warehouse will be utilized for team data storage. Specifically, within our
system, data warehousing could be outsourced to a team that specializes in data storage. This is similar to, for
instance, a popular e-commerce scenario, where merchants contract software companies to design, implement
and run infrastructure of multi-front e-stores, while software companies contract storage companies to actually
store the data. Note that while we use the name team; it is quite possible that actually this will be a single entity
(as in the case of e-commerce solutions) that will be interfaced with our teams through the agent infrastructure.
In other words, the front end of the data warehouse could be one or more agents, but there could be no actual
agent team working “behind it.”

Obviously, it would be also possible to hire Workers with the right infrastructure to facilitate data ware-
housing within the team itself. However, this solution has a number of potential problems. First, recall the

Mirroring information within an agent-team-based intelligent Grid middleware 405

assumption that each node (Worker) can disappear without advanced warning. This assumption would apply
also to the Worker(s) responsible for team data storage. As a result, potential problems that lead us to propose
data mirroring in the first place, would remain unsolved. Second, idea of internal data warehousing goes against
the current trend in IT, which is to outsource anything that is not the core functionality (as long as it can be
outsourced, e.g. currently it is unfeasible that a bank would outsource its IT operations). The reasons are the
same, as data warehousing is not expected to be the core business of most teams. Data warehousing requires a
specific infrastructure (e.g. a server farm) and procedures to assure data persistence and security. Therefore,
on the one hand, it is better to create a facility that specializes in this type of operation and sells its services
to others; on the other it is better to buy service that assures quality of data preservation.

Finally, let us observe one more benefit of utilization of an external storage facility for system data. One of
the important features of the system (see, also Figure 2.1) is that all collected data will be used for knowledge
extraction. The question thus arises, how will this be done? For instance, assuming that data is stored by the
LMaster and the LMirror, which dataset will be used for data mining? Since the LMaster is the gateway and
responsible for all contacts with Users, it seems that this is not the right node to stage the second agent, running
data mining algorithms. At the same time, the LMirror may not have the most current set of data. However,
since it has “much less to do,” this node is the one that could be easily used for data mining (possibly, performed
by a separate data mining agent). However, the situation is much simpler in the case of an outsourced data
storage. Here the data mining agent can be instantiated within this (external) infrastructure, or run as one of
Workers within the team (if running it within the storage facility is prohibited). In this way we can clearly
separate the knowledge management function of the system and devote appropriate resources to it.

4.5. Structure of the data warehouse. Let us now discuss how a data warehouse that could be used
in our system to store the above indicated data, may look like. What we present below is a draft design of a
data warehouse that could be used for storing historical data for efficient analyzing and reporting. Obviously,
additional storage would be needed for preserving short term / dynamic data described in sections 4.1, 4.2.
However, in this case it sill remains an open question if such data should be stored only in the warehouse, or if
it should be mirrored also by the two managerial agents (see, section 4.6. Data warehouse design presented here
is based on principles laid out in [24], and is built around the star table schema. Note that some details of the
proposed design may change as the system evolves (e.g. when new types of complex negotiations are added).
However, the general schema, which is based on the extended Grid ontology, should remain unchanged.

4.5.1. Worker negotiation. Let us start from storage of information about negotiations between the
LMaster and the Worker wanting to join the team. This data is going to be stored in the Worker Negotiation

Fact table (see Figure 4.1.
Each row of the table will correspond to a single negotiation and is going to be identified by the following

dimensions:
• User. Identifies the User of the system. In this preliminary draft it contains only the Name of the
User.

• Worker. Describes the identity (i. e. the ID of the LAgent), configuration and proposed contract
conditions of the Worker requesting to join the team.

• Software Group. A multivalued dimension that describes the software configuration that is going to
be contributed by the Worker. Each Software Group can be composed of many rows of the Software

Dimension table, where each of them describes a single software component.
• Team. The dimension identifying the team. So far it does not contain any additional meaningful
information.

• Date. This is a typical date dimension, as described in [24], which enables easy analysis and reporting
of aggregated time series data.

Measures of the Worker Negotiation Fact table consist of data about money offered as compensation for the
Worker and the information whether the Worker was accepted. These can be used, for example, to estimate
the market value of capabilities offered by the Worker (e.g. repeated rejections could mean that the offered
compensation is too low).

4.5.2. Job negotiation. The Job Negotiation Fact table gathers information about the job submission
negotiations. The diagram of this fact table along with its dimensions can be found in Figure 4.2.

Similarly to the case of the Worker Negotiation Fact table, each row corresponds to a single negotiation,
and is identified using the following dimensions:

406 Maria Ganzha et al.

Fig. 4.1. Worker Negotiation Fact Table

Fig. 4.2. Job Negotiation Fact Table

Mirroring information within an agent-team-based intelligent Grid middleware 407

• User. Identifies User who would like to have a job executed.
• Hardware Requirements. This dimension describes the hardware requirements as specified by the User.
Properties of this dimension are specified using a subset of concepts from the ontology, but flattened
out and used as constraints.

• Required Software. Links to the Software Group dimension that describes software required to execute
the job.

• Task. Describes the task (job) that the User would like to have executed. Details of how a task can be
described or categorized have not yet been fully conceptualized; therefore, this dimension is currently
empty.

Measures currently stored in the table are: the price proposed by the LMaster for executing the job and
a boolean value specifying whether the User accepted the proposed conditions. Similarly as above, these
dimensions may be extended in case of more complex negotiations. Furthermore, they are to be used, among
others, to evaluate market conditions and will play key role in the economic model that the system is based on.

4.5.3. Task execution. Information about every task executed by the team is stored in the Task Execution
Fact table (see Figure 4.3).

Fig. 4.3. Task Execution Fact Table

The table is described using the following dimensions:
• Worker. The worker that performed the task.
• Customer. The User that submitted the job.
• Hardware Requirements. Hardware that was required to perform the task.

408 Maria Ganzha et al.

• Software Requirements. Software necessary to complete the task.
• Task. The description of the executed task.
• Start Date. Link to the Date dimension, specifying the start of the task execution.
• Deadline End Date. Link to the Date dimension, specifying the deadline, as it was negotiated with the
customer.

• End Date. The actual end of task execution.
For all of the Date dimensions (start, deadline, and actual end) there are also separate Date and Time

properties to facilitate precise measurements. These measurements can be used, among others for task scheduling
(based on historical data, see [31]).

4.5.4. Worker responsiveness. The information about the “responsiveness” ofWorkers within the team
is stored in theWorker Responsiveness Fact table. It contains all data necessary to analyze the actual availability
of the Worker, and conformance to the Service Level Agreement between the Worker and the LMaster. Recall,
that in the current design of our system it is assumed that Workers are paid for being available at specific
times. The design of this table is rather simple and is presented in Figure 4.4.

Fig. 4.4. Worker Responsiveness Fact Table

The table is identified by two dimensions:
• Worker. Identifies the Worker that the ‘responsiveness” data concerns.
• Date. Specifies dates for which the measures apply.

Collected measures that can be used to analyze Worker “responsiveness” are:
• Number of pings. The number of messages checking the availability of the Worker sent by the LMaster.
• Number of pongs. The number of responses confirming the availability of the Worker.

It is likely that the collected measures are going to be extended, but they will remain stored in the same
table.

4.6. Consequences of utilization of outsourced data storage. Let us now observe that utilization
of a data warehouse allows us to redefine “roles” of and interactions between the LMaster and the LMirror.
Thus far the LMaster and the LMirror were assumed to store and regularly synchronize all data pertinent to
the long-term existence and success of the team. In the new design, the LMaster stores all such information
in the contracted storage facility and thus the LMirror does not store any data at all. However, it should be
clear that this does not mean that the LMaster does not store any data. It would be highly inefficient to query
the external data warehouse every time some information is needed (for instance, to send a message to any/all
team member(s)). Therefore we have to divide available information into three categories. (a) Information copy
of which is definitely stored by the LMaster, (b) kept a copy if possible (depending on its capabilities), and
(c) information stored in the warehouse only.

In category (a) we include current information concerning: list of team members, their resource specification,
contract details (both job contracts and Worker contracts). In category (c) we include all high volume data

Mirroring information within an agent-team-based intelligent Grid middleware 409

discussed in section 4.4. The remaining information discussed here, such as, for example, cumulative trust
information, market value of specific hardware, etc., may be stored by the LMaster, but can be also accessed
from the data warehouse.

Let us now come back to the LMirror. It does not store any data, but has procedures for: (a) checking
existence of the LMaster, and (b) becoming an LMaster in the case when it crashes. Note that this simplifies
the overall situation of the LMirror. Thus far one of the important issues was, should the LMirror work in a
similar way as any other Worker agent. It was assumed that the LMaster will not work as a Worker, but will
be 100% involved in team management. It will also be paid for its efforts from the overhead imposed on all
contracts (see, [29] for more details). However, in the case of the LMirror the situation was not this obvious.
On the one hand, it had to store team data and regularly check that the LMaster is still alive. On the other
hand, since these actions require much less effort that these of the LMaster, it could perform some tasks as
other Workers do. However, as a Worker it would not be as efficient as the others. Recall, for instance, that
it was to process digested and compressed packages containing information about negotiations that took place
recently. This being the case the LMirror would have to stop processing the User request and immediately take
care of mirroring-related operations (since, assumptions behind our system setup specify that these operations
have precedence over regular work). Let us also recall the suggestion made above, that one of the functions of
the LMirror could be mining the team data; as an add-on function that could be performed instead of being a
regular Worker. Regardless of the final solution used, this lack of clarity as to functionalities and payment (how
much should the LMirror be paid for its services in each of the above described approaches?) would make the
design of the system unclear and maintenance more difficult. This particularly concerns the economic model
behind the system that would become more / unnecessarily complicated.

Situation becomes much clearer when the outsourced data warehouse-based solution is used. Since the
LMirror does not have to store data it can work as all other Workers (the only mirroring-related procedure
will be checking existence of the LMaster—using the pinging-procedure, see [28]). Obviously, if the LMaster

crashes, the LMirror will have to undertake emergency procedures and become the LMaster and re-create the
LMirror. However, this being an emergency situation requires special measures (e.g. involving dealing with the
job it was processing). As suggested above, mining data stored in the warehouse can be delegated to a special
data mining agent. In the case that this agent cannot move to the node where the data is stored, this could be
a natural work for the LMirror, as in this case the data mining task it is executing can be stopped at any time.
Furthermore, the economic aspect of the system can be simplified, as the LMirror can be paid as any Worker.

4.6.1. Restoration of managerial agents. Let us now briefly summarize steps that take place when a
crashed managerial agent is going to be re-created in the scenario when team data is persisted in the external
data warehouse. First, let us consider re-creation of a crashed LMirror. In this situation the LMaster selects
the Worker that is to become the next LMirror. For this it utilizes information about Worker resources, as well
as contract and trust information (selected agent should not only be one of the best computers in the team, but
have a contract with no expiration date and a very good performance track record). Next, the task that this
Worker was working on is transferred to another Worker, while the selected Worker is upgraded by uploading
appropriate modules (see, [18]. Among these modules the new LMirror obtains information where the team
data is stored and details how to access this information. As soon as the new LMirror is fully operational, the
LMaster undertakes the following steps: (a) informs the CIC about the fact that its team has the new LMirror,
(b) informs all remaining Workers about the identity of the new LMirror, and (c) if necessary, informs the data
storage facility that the new LMirror has access rights to the team data.

As noted above, the replacement of the crashed LMaster consists of two phases. First phase proceeds exactly
as described in [28], and takes place within the node that hosts the LMirror. The only differences involve (i)
access rights to the team information being established / confirmed with the data warehousing infrastructure,
and (ii) copying necessary managerial data to the new LMaster (see, Section 4.6). The result of this phase is
replacement of the LMirror (which at the end of the process self-destructs) by th new LMaster. This means
that the team has now an LMaster and no LMirror. Therefore the, above described, procedure of re-creating
an LMirror follows immediately, in the second phase.

5. Concluding remarks. The aim of this paper was to discuss issues involved in information mirroring
in an agent-based Grid resource management system. We have focused our attention on information generated
within the agent team and considered four important cases: (1) team data, (2) job contracts and their execution,
(3) trust-related information, and (4) other sources of large volume information. We have established that we

410 Maria Ganzha et al.

have to deal with two main situations: (a) small-volume data that has to be mirrored immediately, and (b) large
volume data that may be mirrored infrequently. Further analysis indicated that large volume data collection
may be best achieved through utilization of a contracted data storage facility. This latter solution is our solution
of choice and we plan to utilize it in our system.

Acknowledgments. Work of Maria Ganzha and Michal Drozdowicz was supported from the “Funds for
Science” of the Polish Ministry for Science and Higher Education for years 2008-2011, as a research project
(contract number N516 382434). Collaboration of the Polish and Bulgarian teams is partially supported by
the Parallel and Distributed Computing Practices grant. Collaboration of Polish and French teams is partially
supported by the PICS grant New Methods for Balancing Loads and Scheduling Jobs in the Grid and Dedicated

Systems. Collaboration of the Polish and Russian teams is partially supported by the Efficient use of Compu-

tational Grids grant. Work of Marcin Paprzycki and Sofiya Ivanovska was supported in part by the National
Science Fund of Bulgaria under Grant No. D002-146/16.12.2008

REFERENCES

[1] Fast-start failover best practices: Oracle data guard 10g release 2. http://www.oracle.com/technology/deploy/

availability/pdf/MAA_WP_10gR2_FastStartFailoverBestPractices.pdf.
[2] Paypal. http://www.paypal.com.
[3] Project: Minimum intrusion grid. http://www.migrid.org/MiG/Mig/published_papers.html.
[4] Sql server 2008 failover clustering. http://download.microsoft.com/download/6/9/D/69D1FEA7-5B42-437A-B3BA-

A4AD13E34EF6/SQLServer2008FailoverCluster.docx.
[5] Welcome to the FIPA. http://www.fipa.org/.
[6] A. Abraham, R. Buyya, and B. Nath, Natures heuristics for scheduling jobs on computational grids, in Proc. of 8th IEEE

International Conference on Advanced Computing and Communications (ADCOM 2000), 2000, pp. 45–52.
[7] H.-J. Burckert, K. Fischer, and G. Vierke, Holonic transport scheduling with teletruck, Applied Artificial Intelligence, 14

(2000), pp. 697–725.
[8] S. Bussmann and K. Schild, An agent-based approach to the control of flexible production systems, in Proc. of the 8th IEEE

Int. Conf. on Emergent Technologies and Factory Automation (ETFA 2001), vol. 2, IEEE CS Press, Los Alamitos, CA,
2001, pp. 481–488.

[9] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, Economic models for resource management and scheduling in grid
computing, Concurrency and Computation: Practice and Experience, 14 (2002), pp. 1507–1542.

[10] R. Buyya, J. Giddy, and D. Abramson, An evaluation of economy-based resource trading and scheduling on computational
power grids for parameter weep applications, in Proceedings of the Second Workshop on Active Middleware Services
(AMS 2000), Pittsburgh, USA, August 2000, Kluwer Academic Press.

[11] R. Cervenka and I. Trencansky, Agent Modeling Language (AML): A Comprehensive Approach to Modeling MAS,
Whitestein Series in Software Agent Technologies and Autonomic Computing, A Birkhauser book, 2007.

[12] M. Dominiak, M. Ganzha, M. Gawinecki, W. Kuranowski, M. Paprzycki, S. Margenov, and I. Lirkov, Utilizing agent
teams in grid resource brokering, International Transactions on Systems Science and Applications, 3 (2008), pp. 296–306.

[13] M. Dominiak, M. Ganzha, and M. Paprzycki, Selecting grid-agent-team to execute user-job—initial solution, in Proc.
of the Conference on Complex, Intelligent and Software Intensive Systems, Los Alamitos, CA, 2007, IEEE CS Press,
pp. 249–256.

[14] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, and M. Paprzycki, Utilizing agent teams in grid resource
management—preliminary considerations, in Proc. of the IEEE J. V. Atanasoff Conference, Los Alamitos, CA, 2006,
IEEE CS Press, pp. 46–51.

[15] M. Drozdowicz, M. Ganzha, W. Kuranowski, M. Paprzycki, I. Alshabani, R. Olejnik, M. Taifour, M. Senobari,

and I. Lirkov, Software agents in adaj: Load balancing in a distributed environment, Applications of Mathematics in
Engineering and Economics’34, (2008), pp. 527–540.

[16] M. Drozdowicz, M. Ganzha, M. Paprzycki, M. Gawinecki, and A. Legalov, Information flow and usage in an e-shop
operating within an agent-based e-commerce system, in Journal of Siberian Federal Univercity, vol. 2 of Engineering and
Technologies, 2009, pp. 3–22.

[17] M. Drozdowicz, M. Ganzha, M. Paprzycki, R. Olejnik, I. Lirkov, P. Telegin, and M. Senobari, Ontologies, agents
and the grid—an overview, in Profeedings of the PARENG’2009 Conference, 2009. in press.

[18] M. Ganzha, M. Gawinecki, M. Szymczak, G. Frackowiak, M. Paprzycki, M.-W. Park, Y.-S. Han, and Y. Sohn,Generic
framework for agent adaptability and utilization in a virtual organization—preliminary considerations, in Proceedings of
the 2008 WEBIST Conference, J. et. al., ed., Setubal, Portugal, 2008, INSTICC Press.

[19] M. Ganzha, M. Paprzycki, M. Drozdowicz, M. Senobari, I. Lirkov, S. Ivanovska, R. Olejnik, and P. Telegin,
Information flow and mirroring in an agent-based grid resource brokering system, in Proceedings of LLSC Meetings. to
appear.

[20] M. Ganzha, M. Paprzycki, and I. Lirkov, Trust management in an agent-based grid resource brokering system—preliminary
considerations, in Applications of Mathematics in Engineering and Economics’33, M. Todorov, ed., vol. 946 of AIP Conf.
Proc., College Park, MD, 2007, American Institute of Physics, pp. 35–46.

[21] N. Garg, D. Grosu, and V. Chaudhary, Antisocial behavior of agents in scheduling mechanisms, IEEE Transactions on
Systems, Man and Cybernetics, 37 (2007), pp. 946–954. Part A.

Mirroring information within an agent-team-based intelligent Grid middleware 411

[22] M. Ji, A. Veitch, and J. Wilkes, Seneca: remote mirroring done write, in HP Labs publications, 2003.
[23] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, Designing of disaster, in HP Labs publications, 2004.
[24] R. Kimball and M. Ross, The data warehouse toolkit: the complete gide to dimensional modeling, Wiley, 2 ed., 2002.
[25] W. Kuranowski, M. Ganzha, M. Gawinecki, M. Paprzycki, I. Lirkov, and S. Margenov, Forming and managing

agent teams acting as resource brokers in the grid—preliminary considerations, International Journal of Computational
Intelligence Research, 4 (2008), pp. 9–16.

[26] W. Kuranowski, M. Ganzha, M. Paprzycki, and I. Lirkov, Supervising agent team an agent-based grid resource brokering
system—initial solution, in Proceedings of the Conference on Complex, Intelligent and Software Intensive Systems,
F. Xhafa and L. Barolli, eds., IEEE CS Press, Los Alamitos, CA, pp. 321–326.

[27] , Supervising agent team an agent-based grid resource brokering system—initial solution, in Proceedings of the Con-
ference on Complex, Intelligent and Software Intensive Systems, F. Xhafa and L. Barolli, eds., Los Alamitos, CA, 2008,
IEEE CS Press, pp. 321–326.

[28] , Supervising agent team an agent-based grid resource brokering system-initial solution, in Proceedings of the Conference
on Complex, Intelligent and Software Intensive Systems, F. Xhafa and L. Barolli, eds., Los Alamitos, CA, 2008, IEEE
CS Press, pp. 321–326.

[29] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki, I. Lirkov, and S. Margenov, Agents as resource brokers in
grids—forming agent teams, in Proceedings of the LSSC Meeting, LNCS, Springer, 2007.

[30] M.Drozdowicz, M.Ganzha, M.Paprzycki, R.Olejnik, I.Lirkov, P.Telegin, and M.Senobari, Parallel, Distributed and
Grid Computing for Engineering, Computational Scientce, Engineering and Technology Series:21, Saxe-Coburg Publica-
tions, Stirligshire, UK, 2009, ch. Ontologies, Agents and the Grid: An Overview, pp. 117–140.

[31] M.Senobari, M.Drozdowicz, M.Ganzha, M.Paprzycki, R.Olejnik, I.Lirkov, P.Telegin, and N.M.Charkari, Parallel,
Distributed and Grid Computing for Engineering, Computational Scientce, Engineering and Technology Series:21, Saxe-
Coburg Publications, Stirligshire, UK, 2009, ch. Resource Management in Grids: Overview and a discussion of a possible
approach for a Agent-Based Middleware, pp. 141–164.

[32] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, K. Krishnakumar, and A. Meisels, A multi-agent in-
frastructure and a service level agreement negotiation protocol for robust scheduling in grid computing, in Advances in
Grid Computing—EGC 2005, vol. 3470/2005 of Lecture Notes in Computer Science, Germany, 2005, Springer Verlag,
pp. 651–660.

[33] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara, Snapmirror: File-system-based
asynchronous mirroring for disaster recovery, in FAST ’02: Proceedings of the 1st USENIX Conference on File and
Storage Technologies, Berkeley, CA, USA, 2002, USENIX Association, p. 9.

[34] D. A. Rajkumar Buyya and S. Venugopal, The grid economy, in Proceedings of the IEEE, vol. 93, 2005, pp. 698–714.
[35] M. Senobari, M. Drozdowicz, M. Paprzycki, W. Kuranowski, M. Ganzha, R. Olejnik, and I. Lirkov, Combining an

jade-agent-based grid infrastructure with the globus middleware—initial solution, in Proc. of the CIMCA-IAWITC 2008
Conference, M. Mohammadian, ed., Los Alamitos, CA, 2008, IEEE CS Press, pp. 890–895.

[36] D. Ward and H. Hexmoor, Deception as a means for power among collaborative agents, in Proceedings of the Fifth
International Symposium on Collaborative Technologies and Systems (CTS 2004), W. Smari and W. McQuay, eds.,
Society for Modeling and Simulation International, 2004, pp. 109–115.

[37] W. Xing, M. D. Dikaiakos, R. Sakellariou, S. Orlando, and D. Laforenza, Design and development of a core grid
ontology, in Proc. of the CoreGRID Workshop ”Integrated research in Grid Computing,”, November 2005, pp. 21–31.

Edited by: Dana Petcu
Received: Oct 15th, 2009
Accepted: Nov 3rd, 2009

