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Abstract. The numerical solution of 3D linear elasticity equations is
considered. The problem is described by a coupled system of second
order elliptic partial differential equations. This system is discretized by
trilinear parallelepipedal finite elements.
The Preconditioned Conjugate Gradient iterative method is used for
solving of the large-scale linear algebraic systems arising after the Fi-
nite Element Method (FEM) discretization of the problem. Displace-
ment decomposition technique is applied at the first step to construct
a preconditioner using the decoupled block-diagonal part of the original
matrix. Then circulant block-factorization is used for preconditioning
of the obtained block-diagonal matrix. Both preconditioning techniques,
displacement decomposition and circulant block-factorization, are highly
parallelizable.
A parallel algorithm is invented for the proposed preconditioner. The
theoretical analysis of the execution time shows that the algorithm is
highly efficient for coarse-grain parallel computer systems.
A portable parallel FEM code based on MPI is developed. Numerical
tests for real-life engineering problems in computational geomechanics
are performed on a number of modern parallel computers: Cray T3E,
Sunfire 6800, and Beowulf cluster. The reported speed-up and parallel
efficiency well illustrate the parallel features of the proposed method and
its implementation.
Keywords: parallel algorithms, PCG method, preconditioner, circulant
matrix, elasticity problem
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1 Introduction

This work concerns new efficient parallel algorithms and the related program
software for solving the elasticity problem in computational geomechanics. Typ-
ical application problems include the simulations of the foundation of engineering
constructions (which transfer and distribute the total loading into the bed soil)
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and the multi-layer media with strongly varying material characteristics. Here,
the spatial framework of the construction produces a composed stressed-strained
state in active interaction zones. A modern design of cost-efficient construction
with a sufficient guaranteed reliability requires to determine the parameters of
this stressed-strained state.

The application problems are three dimensional nonlinear elasticity problems
which are described mathematically by a system of partial differential equations.
A finite element (or finite difference) discretization reduces the partial differential
equation problem to a system of linear/nonlinear equations. To make a reliable
prediction of the construction safety, which is sensitive to soil deformations, a
very accurate model and a large system of sparse linear equations is required. In
the real-life applications, the system can be very large containing up to several
millions of unknowns. Hence, these problems have to be solved by robust and
efficient parallel iterative methods on a powerful multiprocessor machine.

Note that the numerical solution of linear systems is fundamental in the
elasticity problem. In fact, nonlinear equations generated from the discretization
of the nonlinear elasticity problem have to be solved by an iterative procedure,
in which a system of linear equations has to be solved in every step of iteration.
Solving these linear systems is usually very time-consuming (costing up to 90%
of the total solution time). Hence, developing fast algorithms for solving linear
equations becomes the most important and fundamental issue. A highly efficient
iterative method for solving linear systems significantly speed up the simulation
processes of real application problems. An efficient iterative solver should not
only have a fast convergence rate but also a high parallel efficiency. Moreover, the
resulting program should be efficiently implemented on modern shared-memory,
distributed memory, and shared-distributed memory parallel computers.

2 Elasticity Problems

For simplicity, we mainly study the 3D linear elasticity problem based on the
following two basic assumptions : (1) the displacements are small, and (2) the
material properties are isotropic.

The mathematical formulation of the 3D elasticity problem is described as
follows. Let u = (u1, u2, u3)T be the displacement vector and p the volume force
vector. Here T denotes the transpose of a vector or a matrix. Let us denote the
matrices D, G and H by
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H =




(1 − ν) ν ν 0 0 0
ν (1 − ν) ν 0 0 0
ν ν (1 − ν) 0 0 0
0 0 0 (1 − 2ν) 0 0
0 0 0 0 (1 − 2ν) 0
0 0 0 0 0 (1 − 2ν)




.

Then the strain vector ε = (ε11, ε22, ε33, ε12, ε23, ε31)T and the stress vector σ =
(σ11, σ22, σ33, σ12, σ23, σ31)T are determined by

ε = Gu, and σ = E∗Hε, (1)

where E∗ = E
(1+ν)(1−2ν) . Here ν and E are respectively the Poisson ratio and

the deformation module.
With the above notation, the 3D elasticity problem on a computational do-

main Ω, can be described by a coupled system of three differential equations,
which is written in the form




Dσ = −p in Ω
u = uD on ΓD∑3

i=1 σijni = σNj on ΓN , j = 1, 2, 3,

where ΓD and ΓN are the parts of the boundary of Ω with respectively Dirichlet
and Neumann boundary conditions; and uD and σN are respectively the given
displacement and stress vectors on the boundaries ΓD and ΓN . Here we set
σji = σij for i < j.

If the Poisson ratio and the deformation module are nonlinear functions, the
relations (1) represent the nonlinear nature of the generalized Hooke’s law. Here
the generalized Hooke’s law is specified by the following additional assumption:
the Poisson ratio ν ∈ (0, 1

2 ) is a constant for a given material (soil layer or
constructive element). Obviously, this means that the coefficients in the bound-
ary value problem (2) are piece-wise continuous with jumps through the inner
boundaries between the different soil layers as well as between the soil and the
construction elements.

With a linearization, the nonlinear equations given in (2) can be simplified
to a system of three linear differential equations, which is often referred to as
the Lamé equations.

Denote Sobolev spaces
[
H1

E (Ω)
]3 =

{
v ∈ [

H1 (Ω)
]3 : v|ΓD = uD

}
and

[
H1

0 (Ω)
]3 =

{
v ∈ [

H1 (Ω)
]3 : v|ΓD = 0

}
. The variational formulation of the

Lamé equations is given below:

find u ∈ [
H1

E (Ω)
]3

such that ∀v ∈ [
H1

0 (Ω)
]3

∫
Ω


λ div u div v + 2µ

3∑
i=1

3∑
j=1

εij (u) εij (v)


 dΩ = −

∫
Ω

pT v dΩ +
∫

ΓN

σN
T v dΓ,
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(a) Problem 1; Cross section
of the computational domain Ω.
Esoil = 10MPa, νsoil = 0.3,
Epile = 31500MPa, νpile = 0.2
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(b) Problem 2; Cross section
of the computational domain Ω.
EL1 = 5.2MPa, νL1 = 0.4,
EL2 = 9.4MPa, νL2 = 0.35,
EL3 = 14.0MPa, νL3 = 0.25,
EL4 = 21.4MPa, νL4 = 0.2.

Fig. 1. Benchmark problems

where λ > 0 and µ > 0 are the Lamé coefficients. Here div u is the diver-
gence of the vector u. The relations between the elasticity modulus E, ν and
the material parameters λ, µ are λ = νE

(1+ν)(1−2ν) and µ = E
2(1+ν) . We restrict

our considerations to the case Ω = [0, xmax
1 ] × [0, xmax

2 ] × [0, xmax
3 ], where the

boundary conditions on each of the sides of Ω are of a fixed type. The benchmark
problems from [2] are used in the reported numerical tests. These benchmarks
represent the model of a single pile in a homogeneous sandy clay soil layer (see
Fig. 1(a)) and two piles in a multi-layer soil media (Fig. 1(b)). An uniform grid
is used with n1, n2 and n3 grid points along the coordinate directions. Then the
stiffness matrix K can be written in a 3×3 block form where the blocks Kij are
sparse block–tridiagonal matrices of a size n1n2n3.

3 DD CBF Preconditioning

The preconditioning technique used in this work is described in details in [4,3].
The theoretical analysis of the execution time of the proposed parallel algorithm
is published in [4]. Here we will only sketch the construction of the precondi-
tioner.

First, we use the approach known as displacement decomposition (see, e.g.,
[1]) to define the preconditioner MDD of the matrix K. We introduce the aux-
iliary Laplace equation −ux1x1 − ux2x2 − ux3x3 = f , with boundary conditions
corresponding to the considered coupled elasticity problem. This Laplace equa-
tion is discretized by the same brick finite elements as the original problem, and
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K0 is the obtained stiffness matrix. Then MDD = diag(K0, K0, K0). The next
step in our construction is to substitute in MDD, K0 by A0, where A0 stands
for the Laplace stiffness matrix corresponding to linear finite elements. Now, let
us denote by M0 the Circulant Block-Factorization (CBF) preconditioner (see
[5,4,3]) for A0. At the last step of our construction we substitute in MDD, K0

by M0, and get the DD CBF preconditioner defined by:

MDD CBF = diag(M0, M0, M0).

The following estimate of the condition number of the preconditioned matrix is
derived in [3]

κ(M−1
DD CBF K) = O

(
nmax

1 − 2νmax

)

where nmax = max(n1, n2, n3) and νmax = maxΩ ν.

Remark 1. We have observed in the performed numerical tests that a diagonal
scaling of K improves the convergence rate of the iterative method in the case
of problems with jumping coefficients.

4 Parallel Tests of the DD CBF Preconditioning FEM
Code

In this section we report the results of the experiments executed on three parallel
systems. We report here the number of iterations Nit, the elapsed time Tp on p
processors, the speed-up Sp = T1/Tp, and the parallel efficiency Ep = Sp/p. We
have used discretizations with n1 = n2 = n3 = n where n = 32, 48, 64, and 96.
The sizes of the discrete problems are 3n3.

The developed parallel code has been implemented in C and the paralleliza-
tion has been facilitated using the MPI [6,7] and OpenMP libraries. In all cases,
the optimization options of the compiler have been tuned to achieve the best
performance. Times have been collected using the MPI provided timer. In all
cases we report the best results from multiple runs.

In Table 1 we present results of experiments executed on Cray T3E-900
consisting of 336 Digital Alpha 450 MHz processors, with 64 or 128 MB memory
on processor. The memory on one processor of Cray computer is sufficient only
for the discretization with 32 × 32 × 32 grid points. For larger problems we
report the parallel efficiency related to the results on 6, 16, and 24 processors
respectively.

Table 2 shows the results obtained on Beowulf cluster consisting of 17 PC
with AMD Athlon processors, 650 MHz, 128 MB memory per computer. The
memory per processor is the same and the same approach is used to compute
the relative parallel efficiency.

Tables 3 and 4 shows results obtained on a Sunfire 6800 consisting of 24
UltraSPARC-III 750 MHz processors and 48 GB main memory. As expected, the
parallel efficiency increases with the size of the discrete problems. The parallel
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Table 1. Parallel time (in seconds), speed-up and parallel efficiency on Cray
T3E-900.

Problem 1 Problem 2

n p Nit Tp Sp Ep Nit Tp Sp Ep

32 1 112 124.242 471 479.214
2 61.371 2.02 1.012 236.371 2.03 1.014
4 31.029 4.00 1.001 119.153 4.02 1.005
8 15.973 7.78 0.972 60.529 7.92 0.990
16 8.741 14.21 0.888 32.795 14.61 0.913
32 5.104 24.34 0.761 18.991 25.23 0.789

48 6 607 462.692 1118 845.019
8 344.337 1.008 626.818 1.011
12 232.377 0.996 424.325 0.996
16 176.318 0.984 300.292 1.055
24 121.932 0.949 206.756 1.022
48 65.336 0.885 118.534 0.891

64 16 771 491.822 1253 793.226
32 245.944 1.000 405.173 0.979
64 128.406 0.958 209.953 0.945

96 24 1164 1921.650 1941 3190.150
32 1424.960 1.011 2361.410 1.013
48 960.577 1.000 1592.680 1.002

Table 2. Parallel time (in seconds), speed-up and parallel efficiency on Beowulf
cluster.

Problem 1 Problem 2

n p Tp Sp Ep Tp Sp Ep

32 1 120.962 486.297
2 64.125 1.89 0.943 257.513 1.89 0.944
4 36.656 3.30 0.825 146.807 3.31 0.828
8 18.783 6.44 0.805 74.887 6.49 0.812
16 18.446 6.56 0.410 73.772 6.59 0.412

48 3 1006.950 1721.350
4 770.222 0.981 1409.420 0.916
6 530.166 0.950 902.080 0.954
8 537.809 0.702 984.016 0.656
12 517.499 0.486 936.786 0.460
16 395.148 0.478 674.949 0.478

64 8 1147.780 1909.620
16 1385.660 0.414 2304.120 0.414
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Table 3. Parallel time (in seconds), speed-up and parallel efficiency on Sunfire
6800 using OpenMP.

Problem 1 Problem 2

n p Tp Sp Ep Tp Sp Ep

32 1 68.271 265.898
2 35.388 1.93 0.965 138.818 1.92 0.958
3 24.884 2.74 0.915 99.436 2.67 0.891
4 18.527 3.68 0.921 71.172 3.74 0.934
5 15.423 4.43 0.885 58.423 4.55 0.910
6 12.594 5.42 0.904 48.040 5.53 0.922
7 9.627 7.09 1.013 36.469 7.29 1.042
8 6.802 10.04 1.255 25.033 10.62 1.328
16 4.013 17.01 1.063 14.519 18.31 1.145
24 4.401 15.51 0.646 17.889 14.86 0.619

48 1 1601.360 2726.980
2 803.957 1.99 0.996 1476.360 1.85 0.924
3 551.950 2.90 0.967 1000.590 2.73 0.908
4 407.601 3.93 0.982 739.007 3.69 0.923
5 347.410 4.61 0.922 635.786 4.29 0.858
6 277.599 5.77 0.961 479.173 5.69 0.949
7 246.424 6.50 0.928 414.200 6.58 0.941
8 208.451 7.68 0.960 376.430 7.24 0.906
16 108.478 14.76 0.923 184.147 14.81 0.926
24 78.358 20.44 0.852 136.314 20.01 0.834

64 1 4264.670 7087.930
2 2174.790 1.96 0.980 3578.770 1.98 0.990
3 1479.230 2.88 0.961 2396.550 2.96 0.986
4 1073.160 3.97 0.993 1751.840 4.05 1.011
5 902.729 4.72 0.945 1455.900 4.87 0.974
6 758.351 5.62 0.937 1219.490 5.81 0.969
7 679.034 6.28 0.897 1111.130 6.38 0.911
8 551.936 7.73 0.966 894.441 7.92 0.991
16 294.812 14.47 0.904 489.250 14.49 0.905
24 269.942 15.80 0.658 433.576 16.35 0.681

96 1 27668.500 45917.300
2 13881.100 1.99 0.997 23092.600 1.99 0.994
3 9374.630 2.95 0.984 15543.400 2.95 0.985
4 6909.890 4.00 1.001 11521.600 3.99 0.996
5 5803.100 4.77 0.954 9647.530 4.76 0.952
6 4740.550 5.84 0.973 7825.420 5.87 0.978
7 4142.120 6.68 0.954 6808.080 6.74 0.964
8 3471.910 7.97 0.996 5799.240 7.92 0.990
16 1825.810 15.15 0.947 3017.930 15.21 0.951
24 1504.800 18.39 0.766 2461.980 18.65 0.777
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Table 4. Parallel time (in seconds), speed-up and parallel efficiency on Sunfire
6800 using MPI.

Problem 1 Problem 2

n p Tp Sp Ep Tp Sp Ep

32 1 78.98 313.33
2 43.68 1.81 0.904 168.02 1.86 0.932
4 20.21 3.91 0.977 79.13 3.96 0.990
8 8.10 9.75 1.219 26.72 11.73 1.466
16 3.71 21.28 1.330 12.93 24.24 1.515

48 1 1718.96 2973.82
2 864.19 1.99 0.995 1502.07 1.98 0.990
3 582.46 2.95 0.984 990.31 3.00 1.001
4 436.42 3.94 0.985 747.80 3.98 0.994
6 291.81 5.89 0.982 534.42 5.56 0.927
8 212.68 8.08 1.010 386.37 7.70 0.962
16 109.80 15.65 0.978 201.43 14.76 0.923
24 72.59 23.68 0.987 132.34 22.47 0.936

64 1 4847.60 8075.46
2 2351.42 2.06 1.031 3869.54 2.09 1.043
4 1116.15 4.34 1.086 1830.77 4.41 1.103
8 560.48 8.65 1.081 889.14 9.08 1.135
16 284.02 17.07 1.067 465.98 17.33 1.083

96 1 30949.00 51284.61
2 15197.60 2.04 1.018 25321.60 2.03 1.013
3 10145.80 3.05 1.017 16848.80 3.04 1.015
4 7493.50 4.13 1.033 12545.60 4.09 1.022
6 5006.49 6.18 1.030 8367.84 6.13 1.021
8 4029.95 7.68 0.960 6644.44 7.72 0.965
16 1862.06 16.62 1.039 3102.48 16.53 1.033
24 1412.54 21.91 0.913 2350.58 21.82 0.909

efficiency is above 90% (except the cases where the number of processors do not
divide the size of the discrete problem) which confirms our general expectations.
There exist at least two reasons for the reported high efficiency: (a) the network
parameters start-up time and time for transferring of single word are relatively
small for the multiprocessor machines; (b) there is also some overlapping between
the computations and the communications in the algorithm. Moreover, the super-
linear speed-up can be seen in some of the runs. This effect has a relatively
simple explanation. When the number of processors increases, the size of data
per processor decreases. Thus the stronger memory locality increases the role of
the cache memories. (The level 2 cache on the Sunfire 6800 is 8 Mbyte.)

Finally, we compare results on Cray, Sunfire, and Beowulf cluster with our
previous results (see [3]) on SGI Origin 2000, SUN Ultra-Enterprise, PowerPC
and Alpha clusters. Fig. 2 shows parallel speed-up for execution of one iteration
on different parallel systems.
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Fig. 2. Speed-up for one iteration
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