
Comparative analysis of high performance solvers for solving Stokes equation
M. Ganzha, I. Lirkov, and M. Paprzycki

Citation: AIP Conference Proceedings 1561, 347 (2013); doi: 10.1063/1.4827245
View online: http://dx.doi.org/10.1063/1.4827245
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1561?ver=pdfcov
Published by the AIP Publishing

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=M.+Ganzha&option1=author
http://scitation.aip.org/search?value1=I.+Lirkov&option1=author
http://scitation.aip.org/search?value1=M.+Paprzycki&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4827245
http://scitation.aip.org/content/aip/proceeding/aipcp/1561?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

Comparative Analysis of High Performance Solvers for
Solving Stokes Equation

M. Ganzha∗, I. Lirkov† and M. Paprzycki∗

∗Systems Research Institute, Polish Academy of Science, ul. Newelska 6, 01-447 Warsaw, Poland
†Institute of Information and Communication Technologies, Bulgarian Academy of Sciences

Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria

Abstract. We consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh,
written in terms of velocity and pressure. A parallel algorithm, based on a direction splitting approach is implemented. We are
targeting the massively parallel computer as well as clusters consisting of many-core nodes. The implementation was tested on
the IBM Blue Gene/P supercomputer and two Linux clusters. We compared the results from the direction splitting algorithm
with the results from a state-of-the-art Finite Element software package for solving of Stokes equation.

Keywords: Navier-Stokes, time splitting, ADI, incompressible flows, pressure Poisson equation, parallel algorithm
PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 07.05.Tp, 47.10.ad, 47.11.Bc

INTRODUCTION

The objective of this paper is to analyze (and compare between computers) the parallel performance of a novel
fractional time stepping technique, based on a direction splitting strategy, developed to solve the incompressible
Navier-Stokes equations.

Projection schemes were introduced in [1, 2] and they have been used in Computational Fluid Dynamics since.
During these years, such techniques went through some evolution, but the main paradigm, consisting of decomposing
vector fields into a divergence-free part and a gradient, has been preserved; see [3] for a review. In terms of computa-
tional efficiency, projection algorithms are far superior to the methods that solve the coupled velocity-pressure system,
making them the most popular techniques for solving unsteady Navier-Stokes equations.

The alternating directions algorithm proposed in [4, 5] reduces the computational complexity of the enforcement of
the incompressibility constraint. Here, the standard problem for the pressure correction is replaced by the series of one-
dimensional second-order boundary value problems. This technique is proved to be stable and convergent (see [4, 5]).
The aim of this paper is to experimentally investigate the parallel properties of the algorithm, for two-dimensional
problems, on three distinct parallel computers.

STOKES EQUATION

We consider the time-dependent Navier-Stokes equations in a rectangular domain Ω, on a finite time interval [0,T].
Since the nonlinear term in the Navier-Stokes equations does not interfere with the incompressibility constraint, we
henceforth focus our attention on the time-dependent Stokes equations written in terms of velocity with components
(u,v) and pressure p:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut −ν (uxx + uyy)+ px = f
vt −ν (vxx + vyy)+ py = g in Ω× (0,T)
ux + vy = 0
u|∂Ω = v|∂Ω = 0, ∂n p|∂Ω = 0 in (0,T)
u|t=0 = u0, v|t=0 = v0, p|t=0 = p0 in Ω

, (1)

where a smooth source term has components (f ,g); ν is the kinematic viscosity; and (u0,v0) is a solenoidal initial
velocity field with a zero normal trace. The time interval [0,T] was discretized on a uniform mesh and τ was the time
step.

Application of Mathematics in Technical and Natural Sciences
AIP Conf. Proc. 1561, 347-354 (2013); doi: 10.1063/1.4827245

© 2013 AIP Publishing LLC 978-0-7354-1189-0/$30.00

347 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

TABLE 1. Compilers and libraries on the three computer systems

Galera HPCG IBM Blue Gene/P

Compiler Intel C Compiler 12.1.0 Intel C Compiler 12.1.0 IBM XL C Compiler 9.0
MPI OpenMPI 1.4.3 Intel MPI 4.0.3.008 MPICH2
LAPACK Intel Math Kernel Library 10.0 Intel Math Kernel Library 10.0 Engineering and Scientific

Subroutine Library 5.1

PARALLEL ALTERNATING DIRECTIONS ALGORITHM

Guermond and Minev introduced (in [4]) a fractional time stepping technique for solving the incompressible Navier-
Stokes equations, based on a direction splitting strategy. They used a singular perturbation of Stokes equation with
a perturbation parameter τ . The standard Poisson problem was replaced by series of one-dimensional second-order
boundary value problems.

The scheme used in the algorithm is composed of the following parts: pressure prediction, velocity update, penalty
step, and pressure correction. For the complete description of the numerical scheme and the parallel implementation
of the algorithm on distributed memory computers, consult [5, 6].

EXPERIMENTAL RESULTS

The problem (1) is solved in Ω = (0,1)2, for t ∈ [0,2] with Dirichlet boundary conditions. The discretization in time
is done with the time step 10−2, and the kinematic viscosity ν = 10−3. The second order central differences were used
for the discretization in space, on a rectangular mesh, with mesh sizes hx = 1

nx−1 and hy = 1
ny−1 . The total number of

unknowns in the discrete problem is 600nx ny.
To solve the problem, a portable parallel code was designed and implemented in C, while the parallelization has been

facilitated by applying the MPI and OpenMP standards [7, 8, 9, 10]. Here the OpenMP was used “within” multicore
processors, while MPI was used to facilitate communication between such processors. We have used the LAPACK
subroutines DPTTRF and DPTTS2 (see [11]) for solving tridiagonal systems in equations (4), (5), and (6) from [6] for
the unknowns corresponding to the internal nodes of each sub-domain. The same subroutines were used to solve the
tridiagonal systems with the Schur complement.

The parallel code has been tested on three computer systems: Galera, located in the Centrum Informatyczne TASK,
on a cluster computer system HPCG located in the Institute of Information and Communication Technologies, and on
the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center. Table 1 summarizes the information about
used compilers and libraries on the three computer systems. In our experiments, times have been collected using the
MPI provided timer and we report the best results from multiple runs. In the following tables, we report the elapsed
time Tp in seconds using m MPI processes and k OpenMP processes, where p = m× k, and the parallel speed-up
Sp = T1/Tp.

Table 2 shows the results collected on the Galera. It is a Linux cluster with 336 nodes, and two Intel Xeon quad core
processors per node. Each processor runs at 2.33 GHz. Processors within each node share 8, 16, or 32 GB of memory,
while nodes are interconnected with a high-speed InfiniBand network (see also http://www.task.gda.pl/
kdm/sprzet/Galera). Here, we used an Intel C compiler, and compiled the code with the option “-O3 -openmp”.
For solving the tridiagonal systems of equations using LAPACK subroutines we linked our code to multi-threaded layer
Intel Math Kernel Library (MKL, see http://software.intel.com/en-us/articles/intel-mkl/).

The results obtained with an MPI (only) implementation of the alternating directions algorithm were reported in [6].
We observed slower performance using 8 cores on one node of the Galera using the MPI code. Now we used OpenMP
and the multi-threaded layer Intel MKL for execution of the code on one node. We were unpleasantly surprised,
because the new code has slower performance on 2, 4, and 8 cores, e.g., for nx = ny = 3200 the execution time of the
MPI-only code on 8 cores was 232 seconds, while the execution time of the OpenMP code on “the same” 8 cores was
550 seconds. We will investigate this fact further in the future.

For solving the problem with nx = ny = 12800 18 GB memory is needed. The physical memory on a single node
of Galera is not large enough for solving of twice larger discrete problems and we had to use two and more nodes of
the cluster for such problems. However, observe that for the problems with size larger than nx = ny = 12800, a scaled
speed-up can be calculated. Here, super-linear speed-up can be observed. For instance, for the largest problem, an

348 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

TABLE 2. Execution time for solving of 2D problem on Galera

nx ny processes
1 2 4 8 16 32 64 128 256 512 1024 2048

800 800 47.4 29.1 22.4 19.6 9.2 4.6 2.4 1.3 0.8 0.6 0.5 1.5
800 1600 96.7 58.3 44.5 39.8 19.3 9.4 4.7 2.5 1.4 0.9 0.8 0.6

1600 1600 201.3 119.7 91.7 82.9 38.6 19.7 9.6 4.8 2.6 1.5 1.1 0.9
1600 3200 437.2 263.4 212.9 200.0 79.3 39.5 19.8 9.8 5.0 2.7 1.8 1.2
3200 3200 1070.0 672.6 682.8 550.1 174.0 79.8 39.7 20.3 10.1 5.1 3.0 1.9
3200 6400 2525.6 1754.7 1920.2 1477.6 432.7 178.3 80.5 40.8 20.7 10.2 5.7 3.2
6400 6400 7418.9 4750.9 4007.3 3137.8 993.8 442.9 177.0 85.4 41.5 20.9 10.8 5.9
6400 12800 12650.0 8146.2 5823.4 4956.7 2188.2 1087.3 461.5 205.5 85.9 41.9 21.8 11.3

12800 12800 34804.7 21416.3 14318.1 11272.0 4985.2 2806.5 1111.4 556.6 209.2 86.4 42.7 22.0
12800 25600 10317.4 5035.7 2387.2 1547.4 543.7 211.0 92.3 43.2
25600 25600 11465.1 5126.7 3195.8 1582.4 567.8 214.1 88.6
25600 51200 10507.2 5292.6 3406.1 1596.8 559.3 214.7
51200 51200 11678.2 5220.0 3381.2 1620.5 582.8

TABLE 3. Execution time for solving of 2D problem on HPCG

nx ny processes
1 2 4 8 16 32 64 128

800 800 21.85 12.09 7.72 6.47 3.41 1.60 1.10 0.65
800 1600 46.79 25.27 15.98 13.29 6.94 3.67 2.03 1.13

1600 1600 95.89 50.63 31.53 25.43 13.87 6.65 4.16 2.20
1600 3200 194.19 100.66 63.58 50.56 29.60 13.52 7.96 4.23
3200 3200 400.59 206.77 129.85 106.50 51.77 28.20 14.97 8.25
3200 6400 901.91 470.02 299.95 240.32 116.79 53.55 29.97 17.34
6400 6400 1882.27 1108.73 696.65 562.38 253.67 113.27 71.79 35.34
6400 12800 4277.73 2323.90 1463.49 1113.83 562.59 337.00 153.85 72.42

12800 12800 8068.33 4748.90 3119.29 2761.58 1217.21 593.05 335.91 161.65

increase of the number of processors from 128 to 256 results in scaled speed-up of 2.13. This is a relatively standard
effect related to extra improvement caused by reduction of sub-problem sizes.

Table 3 shows the results collected on the HPCG cluster. HP Cluster Platform Express 7000 enclosures with 36
blades BL 280c, dual Intel Xeon X5560 processors (total 576 cores). Each processor runs at 2.8 GHz. Processors within
each blade share 24 GB RAM, while nodes are interconnected with non-blocking DDR Interconnection via Voltaire
Grid director 2004 with latency 2.5 μs and bandwidth 20 Gbps (see also http://www.grid.bas.bg/hpcg/). Again, we
used an Intel C compiler, and compiled the code with the option “-O3 -openmp”. For solving the tridiagonal systems
of equations using LAPACK subroutines we linked our code to multi-threaded layer Intel MKL.

Again, the somehow slower performance using 8 cores is clearly visible. There are some factors which could play
role for the slower performance using all processors of a single node. Generally, they are a consequence of limitations
of memory subsystems and their hierarchical organization in modern computers. One such factor might be the limited
bandwidth of the main memory bus.

Table 4 presents execution time collected on the IBMBlue Gene/P machine at the Bulgarian Supercomputing Center.
It consists of 2048 compute nodes with quad core PowerPC 450 processors (running at 850 MHz). Each node has 2
GB of RAM. For the point-to-point communications a 3.4 Gb 3D mesh network is used. Reduction operations are
performed on a 6.8 Gb tree network (for more details, see http://www.scc.acad.bg/). We have used the IBM
XLC compiler and compiled the code with the following options: “-O5 -qstrict -qarch=450d -qtune=450 -qsmp=omp”.
For solving the tridiagonal systems using LAPACK subroutines we linked our code to multi threaded Engineering and
Scientific Subroutine Library (ESSL, see http://www-03.ibm.com/systems/software/essl/index.
html).

Again, the new code has slower performance than the MPI code on 2 and 4 cores. The memory of one node of IBM
supercomputer is substantially smaller than on clusters (2 GB vs. 24 or 32 GB) and the largest discrete problem in
our experiments which can be solved on one node have nx = ny = 3200. Observe that also on this machine a slight
superlinear scaled speed-up is observed (for the same reasons). For the largest problem, increasing the number of

349 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

TABLE 4. Execution time for solving of 2D problem on IBM Blue Gene/P

nx ny processes
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 432.4 237.0 148.6 69.5 34.4 17.3 8.8 4.8 2.6 1.7 1.1 0.9 0.6
800 1600 879.2 505.1 305.8 144.0 69.8 35.5 17.3 9.5 4.9 3.2 1.8 1.6 1.0

1600 1600 1772.9 979.6 595.1 312.0 152.8 71.6 35.6 17.7 9.2 5.3 3.0 2.2 1.5
1600 3200 3600.3 2082.4 1295.4 633.9 313.1 148.4 72.0 36.5 18.0 10.3 5.5 3.9 2.4
3200 3200 7439.4 4281.1 2720.9 1324.2 608.7 320.8 157.3 73.0 36.5 18.7 10.0 6.1 3.7
3200 6400 2795.3 1327.1 651.0 321.7 151.1 73.3 38.0 19.1 11.7 6.5
6400 6400 2777.5 1354.1 625.4 323.7 160.1 74.9 37.9 20.3 11.2
6400 12800 2853.8 1357.3 656.4 325.0 154.2 75.7 41.0 21.0

12800 12800 2844.2 1362.2 628.7 329.2 163.7 78.4 40.5
12800 25600 2867.5 1365.6 666.7 330.9 160.8 79.5
25600 25600 2858.7 1376.7 639.1 335.9 168.9
25600 51200 2897.0 1381.0 679.0 338.5
51200 51200 2884.5 1390.8 649.2

100

101

102

103

104

 1 4 16 64 256 1024 4096

Ti
m

e

number of processes

Execution time

Galera nx=ny= 800
HPCG nx=ny= 800

Blue Gene nx=ny= 800
Galera nx=ny=1600
HPCG nx=ny= 1600

Blue Gene nx=ny=1600
Galera nx=ny=3200
HPCG nx=ny= 3200

Blue Gene nx=ny=3200
Galera nx=ny=6400
HPCG nx=ny= 6400

Blue Gene nx=ny=6400

FIGURE 1. Execution time for 2D problem with nx = ny = 800,1600,3200,6400

processors from 1024 to 2048 results in scaled speed-up of 2.07.
The execution time on the three parallel systems is shown in Figure 1. Because of the slower processors, the

execution time obtained on the Blue Gene/P is substantially larger than that on the clusters. At the same time, the
parallel efficiency obtained on a large number of nodes on the supercomputer is better. The main reason of this can
be related to the superior performance of the networking infrastructure of the Blue Gene (recall, the extra networking
infrastructure available there).

To round up the performance analysis of the alternating directions algorithm, the speed-up obtained on Galera is

350 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

TABLE 5. Speed-up on Galera

nx ny processes
2 4 8 16 32 64 128 256 512 1024 2048

800 800 1.63 2.12 2.41 5.08 10.38 19.71 35.94 55.46 81.01 87.16 25.33
800 1600 1.66 2.17 2.43 4.97 10.27 20.51 38.80 67.11 106.83 120.14 127.52

1600 1600 1.68 2.20 2.43 5.12 10.24 20.90 41.90 74.07 135.77 183.15 229.49
1600 3200 1.66 2.05 2.19 5.51 11.06 22.08 44.61 87.61 160.21 236.53 361.04
3200 3200 1.59 1.57 1.94 6.15 13.39 26.94 52.74 105.98 209.44 351.23 562.98
3200 6400 1.44 1.32 1.71 5.67 14.18 31.44 61.93 122.34 246.74 443.73 779.57
6400 6400 1.56 1.85 2.36 6.80 16.75 41.92 86.86 178.57 354.76 688.90 1259.92
6400 12800 1.55 2.17 2.55 5.78 11.63 27.40 61.53 147.18 301.45 580.05 1118.72

12800 12800 1.63 2.43 3.09 6.98 12.40 31.32 62.53 166.39 402.91 815.48 1584.34

TABLE 6. Speed-up on HPCG

nx ny processes
2 4 8 16 32 64 128

800 800 1.81 2.83 3.38 6.40 13.65 20.52 33.82
800 1600 1.85 2.93 3.52 6.74 12.76 23.04 41.47

1600 1600 1.89 3.04 3.77 6.92 14.43 23.05 43.55
1600 3200 1.93 3.05 3.84 6.56 14.37 24.39 45.87
3200 3200 1.94 3.08 3.76 7.74 14.20 26.76 48.58
3200 6400 1.92 3.01 3.75 7.72 16.84 30.09 52.01
6400 6400 1.70 2.70 3.35 7.42 16.62 26.22 53.26
6400 12800 1.84 2.92 3.84 7.60 12.69 27.80 59.07

12800 12800 1.70 2.59 2.92 6.63 13.60 24.02 49.91

reported in Table 5, while the speed-up on HPCG — in Table 6, the speed-up on the IBM Blue Gene/P — in Table 7,
and the parallel efficiency — in Table 8.

In each case, when increasing the number of cores of the two clusters, the parallel efficiency decreases on 8 cores
and after that it increases. As expected, the parallel efficiency on the IBM Blue Gene/P improves with the size of the
discrete problems. The efficiency on 1024 cores increases from 39% for the smallest problems to 73% for the largest
problems.

To compare the performance of the proposed approach with an existing method, we solved the same 2D
Stokes problem using Elmer [12] Open Source Finite Element Software for Multiphysical Problems (see
http://www.csc.fi/english/pages/elmer). Here, for the Elmer we used the following keywords
in the input file:

Simulation
Coordinate System = “Cartesian 2D”
Simulation Type = Transient
Timestep intervals = 200
Timestep Sizes = 0.01
End

TABLE 7. Speed-up on IBM Blue Gene/P

nx ny processes
2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 1.82 2.91 6.22 12.57 25.05 48.99 89.10 168.67 247.90 401.65 465.48 687.32
800 1600 1.74 2.87 6.10 12.60 24.75 50.69 92.20 177.88 276.51 486.02 552.26 897.63

1600 1600 1.81 2.98 5.68 11.60 24.76 49.81 99.87 192.28 332.75 592.66 808.05 1180.51
1600 3200 1.73 2.78 5.68 11.50 24.26 49.97 98.57 200.07 349.59 651.68 923.50 1522.27
3200 3200 1.74 2.73 5.62 12.22 23.19 47.30 101.85 203.58 397.74 744.26 1209.29 2009.58

351 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

TABLE 8. Parallel efficiency

nx ny processes
2 4 8 16 32 64 128 256 512 1024 2048 4096

Galera

800 800 0.813 0.529 0.302 0.321 0.324 0.308 0.281 0.217 0.158 0.085 0.015
800 1600 0.829 0.543 0.304 0.314 0.321 0.320 0.303 0.262 0.209 0.117 0.076

1600 1600 0.841 0.549 0.304 0.326 0.320 0.328 0.327 0.299 0.265 0.179 0.114
1600 3200 0.830 0.513 0.273 0.345 0.346 0.345 0.348 0.342 0.313 0.231 0.176
3200 3200 0.795 0.392 0.243 0.391 0.419 0.421 0.412 0.414 0.409 0.343 0.275
3200 6400 0.720 0.329 0.214 0.365 0.443 0.490 0.483 0.477 0.481 0.433 0.381
6400 6400 0.781 0.463 0.296 0.467 0.523 0.655 0.679 0.698 0.693 0.673 0.615
6400 12800 0.776 0.543 0.319 0.361 0.363 0.428 0.481 0.575 0.589 0.566 0.546

12800 12800 0.813 0.608 0.386 0.436 0.388 0.489 0.489 0.650 0.787 0.796 0.774

HPCG

800 800 0.904 0.708 0.422 0.400 0.426 0.321 0.264
800 1600 0.926 0.732 0.440 0.421 0.399 0.360 0.324

1600 1600 0.947 0.760 0.471 0.432 0.451 0.360 0.340
1600 3200 0.965 0.764 0.480 0.410 0.449 0.381 0.358
3200 3200 0.969 0.771 0.470 0.484 0.444 0.418 0.380
3200 6400 0.959 0.752 0.469 0.483 0.526 0.470 0.406
6400 6400 0.849 0.675 0.418 0.464 0.519 0.410 0.416
6400 12800 0.920 0.731 0.480 0.475 0.397 0.434 0.461

12800 12800 0.849 0.647 0.365 0.414 0.425 0.375 0.390

IBM Blue Gene/P

800 800 0.912 0.727 0.777 0.786 0.783 0.765 0.696 0.659 0.484 0.392 0.227 0.168
800 1600 0.870 0.719 0.763 0.787 0.773 0.792 0.720 0.695 0.540 0.475 0.270 0.219

1600 1600 0.905 0.745 0.710 0.725 0.774 0.778 0.780 0.751 0.650 0.579 0.395 0.288
1600 3200 0.864 0.695 0.710 0.719 0.758 0.781 0.770 0.782 0.683 0.636 0.451 0.372
3200 3200 0.869 0.684 0.702 0.764 0.725 0.739 0.796 0.795 0.777 0.727 0.590 0.491

Solver 1
Equation = Navier-Stokes
Procedure = “FlowSolve” “FlowSolver”
Variable = Flow Solution[Velocity:2 Pressure:1]
Flow Model = Stokes
Stabilize = True
Optimize Bandwidth = True
Stabilization Method = Stabilized
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0e-6
Linear System Preconditioning = ILU2
Linear System ILUT Tolerance = 1.0e-3
End

Figure 2 shows the measured CPU time for solving the 2D Stokes problem using Elmer software, on the Blue
Gene/P machine, for discrete problems with sizes nx = ny = 100,200,400.

As can be seen, the performance of the Elmer package is inferior to our approach. The first observation is related
to the fact, that due to the differences in approaches, the Elmer requires much larger memory than our approach.
This is the reason why we could not solve the problem using Elmer on smaller number of processors than 4 for the
smallest problem; and 32 for the largest one. For similar reasons, the Elmer turned useless when attempted at being

352 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

100

101

102

103

104

105

 1 2 4 8 16 32 64 128 256 512

Ti
m

e

number of processes

Execution time

Blue Gene alternating directions nx=ny=100
Blue Gene alternating directions nx=ny=200
Blue Gene alternating directions nx=ny=400

Blue Gene Elmer nx=ny=100
Blue Gene Elmer nx=ny=200
Blue Gene Elmer nx=ny=400

FIGURE 2. Execution time for 2D problem with nx = ny = 100,200,400

used on more than 64 processors. The second observation concerns execution times. Here, also, the proposed approach
is superior to that available when using the Elmer package.

CONCLUDING REMARKS

In this paper we have considered parallel solution of time dependent Stokes equation using a direction splitting
approach. We have studied performance of the parallel code, implemented using a hybrid approach based on OpenMP
and MPI, when applied to a 2D model problem on a rectangular domain. The performance has been studied on two
COTS clusters and on an IBM Blue Gene supercomputer. We have found that, against initial predictions, the hybrid
solution method does not lead to the expected performance improvement. Second, the extra networking infrastructure
available in the Blue Gene plays very important role when parallel efficiency is concerned. At the same time, processor
speed and memory size make up for the networking “deficiencies” of the clusters, by allowing them to solve larger
problems faster (in the sense of the wall-clock solution time). Finally, we have compared the performance of the
proposed approach with that of the state-of-the-art Elmer package. We have found our method to be vastly superior
both in terms of memory use and efficiency. In the next step we plan to make similar comparisons for the 3D problems
and perform an in-depth study of the efficiency of the OpenMP-related part of code.

ACKNOWLEDGMENTS

Computer time grants from the Bulgarian Supercomputing Center (BGSC) and the TASK are kindly acknowledged.
This research was partially supported by grants DCVP 02/1 and I01/5 of the Bulgarian NSF. Work presented here is a
part of the Poland-Bulgaria collaborative grant “Parallel and distributed computing practices”.

353 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

REFERENCES

1. A. J. Chorin (1968) Math. Comp. 22, 745–762.
2. R. Temam (1969) Arch. Rat. Mech. Anal. 33, 377–385.
3. J.-L. Guermond, P. Minev, and J. Shen (2006) Comput. Methods Appl. Mech. Engrg. 195, 6011–6054.
4. J.-L. Guermond, and P. Minev (2010) Comptes Rendus Mathematique 348, 581–585.
5. J.-L. Guermond, and P. Minev (2011) Computer Methods in Applied Mechanics and Engineering 200, 2083–2093.
6. I. Lirkov, M. Paprzycki, and M. Ganzha, “Performance Analysis of Parallel Alternating Directions Algorithm for Time

Dependent Problems,” in 9th international conference on Parallel Processing and Applied Mathematics, PPAM 2011, Part
I, edited by R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Springer, 2012, vol. 7203 of Lecture notes in
computer science, pp. 173–182.

7. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference, Scientific and engineering
computation series, The MIT Press, Cambridge, Massachusetts, 1997, second printing.

8. D. Walker, and J. Dongarra (1996) Supercomputer 63, 56–68.
9. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald, Parallel programming in OpenMP, Morgan

Kaufmann, 2000.
10. B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared memory parallel programming, vol. 10, MIT

press, 2008.
11. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, 1999, 3rd edn.
12. M. Lyly, J. Ruokolainen, and E. Järvinen (1999) CSC-report on scientific computing 2000, 156–159.

354 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

213.191.204.24 On: Sun, 27 Oct 2013 16:50:48

